1 / 36

Conductance through coupled quantum dots

Conductance through coupled quantum dots. J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA. Collaborators: R. Žitko , J. Stefan Inst., Ljubljana, Slovenia

sandro
Download Presentation

Conductance through coupled quantum dots

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Conductance through coupled quantum dots J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA

  2. Collaborators: • R. Žitko, J. Stefan Inst., Ljubljana, Slovenia • A.Ramšak and T. Rejec,FMF, Physics dept., University of Ljubljana and J. Stefan Inst., Ljubljana, Slovenia

  3. Introduction • Experimental motivation • Single QD: using three different methods: NRG, CPMC and GS – accurate results in a wide parameter regime • DQD system: • Large td: Kondo regimes for odd DQD occupancy • Small td: Two-stage Kondo regime • Three QD’s: • Good agreement between CPMC and GS. • Two regimes • t’’>G: three peaks in G(d) due to 3 molecular levels • t’’<G: a single peak in G(d) of width ~ U • At t”<<D, two-stage Kodo effect is found with an unstable non-Fermi liquid fixed point • N-dot system in parallel: RKKY interaction  S=N/2 Kondo effect

  4. Double- and multiple- dot structures Holleitner et el., Science 297, 70 (2002) Craig et el., Science 304, 565 (2004)

  5. Quantum Dot(Anderson single impurity problem) d

  6. ed+U ed Quantum Dot U=1 d d=ed+U/2

  7. ed+U ed Quantum Dot U=1 d

  8. ed+U ed Quantum Dot U=1 d

  9. ed+U ed Quantum Dot U=1 d

  10. ed+U ed Quantum Dot U=1 d

  11. ed+U ed Quantum Dot U=1 d

  12. ed+U ed Quantum Dot U=1 d

  13. ed+U ed Quantum Dot U=1 d d=ed+U/2 Meir-Wingreen, PRL 68,2512 (1992)

  14. ed+U ed Quantum Dot U=1 d d=ed+U/2

  15. ed+U ed Quantum Dot U=1 d d=ed+U/2

  16. ed+U ed Quantum Dot U=1 d d=ed+U/2

  17. ed+U ed Quantum Dot U=1 d d=ed+U/2

  18. ed+U ed Quantum Dot U=1 d d=ed+U/2

  19. ed+U ed Quantum Dot U=1 d D=U>>G d=ed+U/2 ~ gate voltage

  20. Three alternative methods: • Constrained Path Monte Carlomethod(CPMC),Zhang, Carlson and Gubernatis, PRL 74 ,3652 (1995);PRB 59, 12788 (1999). • Projection – variational metod (GS), Schonhammer, Z. Phys. B 21, 389 (1975); PRB 13, 4336 (1976), Gunnarson and Shonhammer, PRB 31, 4185 (1985), Rejec and Ramšak, PRB 68, 035342 (2003). • Numerical Renormalization Group using Reduced Density Matrix (NRG), Krishna-murthy, Wilkins and Wilson, PRB 21, 1003 (1980); Costi, Hewson and Zlatić, J. Phys.: Condens. Matter 6, 2519, (1994); Hofstetter, PRL 85, 1508 (2000).

  21. How to obtain G from GS properties: • CPMC and GS are zero-temperature methods  Ground state energy • Conditions: System is a Fermi liquid ~ N-(noninteracting) sites, N ∞ ~ G0=2e2/h Rejec, Ramšak, PRB 68, 035342 (2003)

  22. Comparison: CPMC,GS,NRG • CPMC, • GS-variational, • Hartree-Fock: • NRG: U<t; Wide-band Meir-Wingreen, PRL 68,2512 (1992)

  23. Comparison: CPMC,GS,NRG • CPMC, • GS-variational, • Hartree-Fock: • NRG: U>>t; Narrow-band Meir-Wingreen, PRL 68,2512 (1992)

  24. Side-coupled Double Quantum DotPRB 73, 035332 (2006)

  25. Large td

  26. Large td – Kondo temperatures: Estimating TK using Scrieffer-Wolf:

  27. Large td – Kondo temperatures: Estimating TK using Scrieffer-Wolf:

  28. Small td – Two-stage Kondo effect Vojta et al., PRB 65, 140405 (2002); Hofstetter, Schoeller, PRL 88, 016803 (2002), Cornaglia and Grempel, PRB 71, 075305 (2005), Wiel et al., PRL 88, 126803 (2002). Jeff<TK:Two Kondo temperatures: TK and TK0 Two energy scales: Jeff=4td2/U, TK

  29. Small td – Two-stage Kondo effect Vojta et al., PRB 65, 140405 (2002); Hofstetter, Schoeller, PRL 88, 016803 (2002), Cornaglia and Grempel, PRB 71, 075305 (2005), Wiel et al., PRL 88, 126803 (2002). Jeff<TK:Two Kondo temperatures: TK and TK0 Two energy scales: Jeff=4td2/U, TK Jeff<TK TK0 TK

  30. Three coupled quantum dotsPRB 73, 153307 (2006) • Using CPMC: NCPMC [100,180] • Using GS – variational: NGS [1000,2000]

  31. Three coupled QDs 1 2 3 Oguri, Nisikawa,Hewson, cond-mat/0504771

  32. Three coupled QDs Non-Fermi-Liquid NRG Calculation Zitko & Bonca Condmat TK(1) MO AFM MO AFM TK(2) TSK TK(1) TK(2) TD NFL

  33. N - quantum dotsPRB 74, 045312 (2006) Schrieffer-Wolff Perturbation in Vk4-th order

  34. N - quantum dots • Three different time-scales: • Separation of time-scales: • Different temperature-regimes:

  35. Conclusions • Using three different methods: NRG, CPMC and GS – accurate results in a wide parameter regime • DQD system: • Large td: Kondo regimes for odd DQD occupancy • Small td: Two-stage Kondo regime • Three QD’s: • Good agreement between CPMC and GS. • Different phases exist: • t’’>G: three peaks in G(d) due to 3 molecular levels • t’’<G: a single peak in G(d) of width ~ U • Two-stage Kondo regime, when t’’<TK • NFL behavior is found • N-dot system in parallel: RKKY interaction

More Related