180 likes | 855 Views
Due figure A e B si dicono equiestese o equivalenti se hanno la stessa estensione. In simboli si scrive A B.
E N D
Due figure A e B si dicono equiestese o equivalenti se hanno la stessa estensione. In simboli si scrive A B Date due figure A e B la cui intersezione è costituita solo dai punti di una parte del contorno, si dice loro somma la figura F ottenuta come unione dei punti di A con i punti di B. Quando una superficie C è la somma di due superfici A e B, la superficie B si dice differenza di C e A e si scrive B C – A. Equivalenza Area è la caratteristica comune a tutte le figure tra loro equivalenti. 1
Due figure A e B che si ottengono come somma di figure congruenti si dicono equicomposte. Reciprocamente due figure che si possono suddividere in modo che siano formate da parti congruenti si dicono equiscomponibili. Equiscomponibilità Per vedere se due figure sono equivalenti basta andare a ricercare se si possono scomporre in parti a due a due congruenti in modo che, sommando queste parti in modo diverso, da una figura si ottenga l’altra. L’operazione di equiscomposizione di due figure equivalenti non è sempre possibile. ESEMPIO: un quadrato e un cerchio aventi la stessa area non si possono equiscomporre. 2
Teorema. Due parallelogrammi che hanno basi ed altezze ordinatamente congruenti sono equivalenti AB ≅ PQ, DH ≅ SKABCDPQRS un parallelogramma è equivalente ad un rettangolo che ha la base e l’altezza rispettivamente congruenti alla base e all’altezza del parallelogramma. Criteri di equivalenza EQUIVALENZA TRA PARALLELOGRAMMI In particolare: 3
Teorema. Un parallelogramma è equivalente a un triangolo che ha la base congruente a quella del parallelogramma e altezza doppia. AB ≅ PQ, RK ≅ 2DH ABCDRPQ • un parallelogramma è equivalente a un triangolo che ha la stessa altezza del parallelogramma e base doppia di quella del parallelogramma (in figura sono congruenti i triangoli ADE e DFC) Criteri di equivalenza EQUIVALENZA TRA PARALLELOGRAMMI E TRIANGOLI CONSEGUENZE: 4
un parallelogramma è equivalente al doppio di un triangolo che ha la stessa base e la stessa altezza del parallelogramma (in figura sono congruenti i triangoli ABC e ACD) • due triangoli che hanno basi e altezze congruenti sono equivalenti (sono entrambi equivalenti a uno stesso parallelogramma) Criteri di equivalenza 5
Teorema. Un trapezio è equivalente a un triangolo che ha per base la somma delle basi del trapezio e per altezza la stessa altezza del trapezio. Teorema. Ogni poligono circoscritto a una circonferenza è equivalente a un triangolo avente per base il perimetro del poligono e per altezza il raggio della circonferenza. Criteri di equivalenza EQUIVALENZA TRA TRAPEZI E TRIANGOLI EQUIVALENZA TRA POLIGONI CIRCOSCRITTI A UNA CIRCONFERENZA E TRIANGOLI 6
I Teorema di Euclide. In ogni triangolo rettangolo il quadrato costruito su un cateto è equivalente al rettangolo che ha per lati l’ipotenusa e la proiezione di quel cateto sull’ipotenusa. Q R Teorema di Pitagora. In ogni triangolo rettangolo la somma dei quadrati costruiti sui cateti è equivalente al quadrato costruito sull’ipotenusa. Q1 + Q2 Q3 Teoremi di Pitagora e di Euclide In un triangolo rettangolo valgono i seguenti teoremi: 7
II Teorema di Euclide. In ogni triangolo rettangolo il quadrato costruito sull’altezza relativa all’ipotenusa è equivalente al rettangolo che ha per lati le proiezioni dei cateti sull’ipotenusa. Q R Teoremi di Pitagora e di Euclide 8