1 / 19

Warm Up Divide using long division.

6 x – 15 y. 7 a 2 – ab. 3. a. Warm Up Divide using long division. 1. 161 ÷ 7. 23. 2. 12.18 ÷ 2.1. 5.8. Divide. 3. 2 x + 5 y. 4. 7 a – b. Objective. Use long division and synthetic division to divide polynomials. Vocabulary. synthetic division.

saniya
Download Presentation

Warm Up Divide using long division.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 6x– 15y 7a2 – ab 3 a Warm Up Divide using long division. 1. 161 ÷ 7 23 2. 12.18 ÷ 2.1 5.8 Divide. 3. 2x + 5y 4. 7a – b

  2. Objective Use long division and synthetic division to divide polynomials.

  3. Vocabulary synthetic division

  4. Polynomial long division is a method for dividing a polynomial by another polynomials of a lower degree. It is very similar to dividing numbers.

  5. y – 3 2y3 – y2 + 0y + 25 Example 1: Using Long Division to Divide a Polynomial Divide using long division. (–y2 + 2y3+ 25) ÷ (y – 3) Step 1 Write the dividend in standard form, including terms with a coefficient of 0. 2y3 – y2 + 0y + 25 Step 2 Write division in the same way you would when dividing numbers.

  6. y – 3 2y3 – y2 + 0y + 25 Example 1 Continued Step 3 Divide. 2y2 + 5y + 15 Notice that y times 2y2 is 2y3. Write 2y2 above 2y3. Multiply y – 3 by 2y2. Then subtract. Bring down the next term. Divide 5y2 by y. –(2y3 – 6y2) 5y2 + 0y –(5y2 – 15y) Multiply y – 3 by 5y. Then subtract. Bring down the next term. Divide 15y by y. 15y + 25 Multiply y – 3 by 15. Then subtract. –(15y – 45) 70 Find the remainder.

  7. 70 –y2 + 2y3 + 25 = 2y2 + 5y + 15 + y – 3 y – 3 Example 1 Continued Step 4 Write the final answer.

  8. 3x + 1 15x2 + 8x – 12 Check It Out! Example 1a Divide using long division. (15x2 + 8x– 12) ÷ (3x + 1) Step 1 Write the dividend in standard form, including terms with a coefficient of 0. 15x2 + 8x– 12 Step 2 Write division in the same way you would when dividing numbers.

  9. 3x + 1 15x2 + 8x – 12 Check It Out! Example 1a Continued Step 3 Divide. 5x + 1 Notice that 3x times 5x is 15x2. Write 5x above 15x2. Multiply 3x + 1 by 5x. Then subtract. Bring down the next term. Divide 3x by 3x. –(15x2 + 5x) 3x – 12 –(3x + 1) Multiply 3x + 1 by 1. Then subtract. –13 Find the remainder.

  10. 13 15x2 + 8x– 12 = 5x + 1 – 3x + 1 3x + 1 Check It Out! Example 1a Continued Step 4 Write the final answer.

  11. Synthetic division is a shorthand method of dividing a polynomial by a linear binomial by using only the coefficients. For synthetic division to work, the polynomial must be written in standard form, using 0 and a coefficient for any missing terms, and the divisor must be in the form (x – a).

  12. 1 1 1 3 3 3 a = For (x – ), a = . 3 9 –2 1 1 3 3 Example 2A: Using Synthetic Division to Divide by a Linear Binomial Divide using synthetic division. (3x2 + 9x – 2) ÷ (x – ) Step 1 Find a. Then write the coefficients and a in the synthetic division format. Write the coefficients of 3x2 + 9x – 2.

  13. 1 1 1 1 1 3 3 3 3 3 Draw a box around the remainder, 1 . 3 1 3 9 –2 1 1 3 3x + 10 + x – Example 2A Continued Step 2 Bring down the first coefficient. Then multiply and add for each column. 1 3 10 Step 3 Write the quotient.

  14. –2 3 – 1 0 5 –1 Example 2B: Using Synthetic Division to Divide by a Linear Binomial Divide using synthetic division. (3x4 – x3+ 5x – 1) ÷ (x + 2) Step 1 Find a. a = –2 For (x + 2), a = –2. Step 2 Write the coefficients and a in the synthetic division format. Use 0 for the coefficient of x2.

  15. 45 3x3 – 7x2 + 14x – 23 + x + 2 Example 2B Continued Step 3 Bring down the first coefficient. Then multiply and add for each column. –2 3 –1 0 5 –1 Draw a box around the remainder, 45. –6 14 –28 46 3 –7 14 –23 45 Step 4 Write the quotient. Write the remainder over the divisor.

  16. You can use synthetic division to evaluate polynomials. This process is called synthetic substitution. The process of synthetic substitution is exactly the same as the process of synthetic division, but the final answer is interpreted differently, as described by the Remainder Theorem.

  17. Example 3A: Using Synthetic Substitution Use synthetic substitution to evaluate the polynomial for the given value. P(x) = 2x3 + 5x2 – x + 7 for x = 2. 2 2 5 –1 7 Write the coefficients of the dividend. Use a = 2. 4 18 34 2 9 17 41 P(2) = 41 Check Substitute 2 for x in P(x) = 2x3 + 5x2 – x + 7. P(2) = 2(2)3 + 5(2)2 – (2) + 7  P(2) = 41

  18. 1 1 1 1 3 3 3 3 Write the coefficients of the dividend. Use 0 for the coefficient of x2. Use a = . – P( ) = 7 Example 3B: Using Synthetic Substitution Use synthetic substitution to evaluate the polynomial for the given value. P(x) = 6x4 – 25x3 – 3x + 5 for x = – . 6 –25 0 –3 5 –2 9 –3 2 6 –27 9 –6 7

More Related