1 / 53

CARACTERIZAÇÃO DE NANOPARTICULAS E NANOESTRUTURAS Aula 10 QF933 Instituto de Química UNICAMP

CARACTERIZAÇÃO DE NANOPARTICULAS E NANOESTRUTURAS Aula 10 QF933 Instituto de Química UNICAMP. Nanoparticles Characterization: Measurement of the particles size by the PCS technique. MSc. Priscyla D. Marcato Dr. Nelson Durán. Principle of Measurement.

santos
Download Presentation

CARACTERIZAÇÃO DE NANOPARTICULAS E NANOESTRUTURAS Aula 10 QF933 Instituto de Química UNICAMP

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CARACTERIZAÇÃO DE NANOPARTICULAS E NANOESTRUTURASAula 10 QF933Instituto de QuímicaUNICAMP

  2. Nanoparticles Characterization: Measurement of the particles size by the PCS technique MSc. Priscyla D. Marcato Dr. Nelson Durán

  3. Principle of Measurement • If the particles or molecules are illuminated with a laser, the intensity of the scattered light fluctuates at a rate that is dependent upon the size of the particles • Analysis of these intensity fluctuations yields the velocity of the Brownian motion and hence the particle size using the Stokes-Einstein relationship.

  4. Brownian Motion Particles, emulsions and molecules in suspension undergo Brownian motion. This is the motion induced by the bombardment by solvent molecules that themselves are moving due to their thermal energy Temperature and viscosity must be known

  5. Intensity of the scattered light fluctuates

  6. Intensity of the scattered light fluctuates Small particles- noisy curve Large particles- smooth curve

  7. Stokes-Einstein relationship The velocity of the Brownian motion is defined by a property known as the translational diffusion coefficient (usually given the symbol, D).

  8. He-Ne Laser  = 633 nm Zetasizer Nano ZS Malvern

  9. Determining particle size Determined autocorrelation function Depend

  10. Correlation function Correlograms

  11. Correlogram from a sample containing large particles Correlogram from a sample containing small particles

  12. Low concentration turbidity is linear with concentration Particles are so close together that the scattered radiation is re-scattered by other particles. High concentration

  13. Optical arrangement in 173° backscatter detection

  14. Information Size by: - Intensity I  d6 Rayleigh Scattering (For nanoparticles less than d =λ/10 or around 60nm the scattering will be equal in all Directions-isotropic)

  15. 8 nm 80 nm This particles will scatter 106 (one million) times more light than the small particle (8 nm) The contribution to the total light scattered by the small particles will be extremely small

  16. 8 80

  17. By the Mie theory is possible convert intensity distribution into volume V= 4r3 r = d/2 V= 4(d/2)3 = 4d3 8 - Volume  d3 - Number  d1

  18. Two population of spherical nanoparticles : 5 nm and 50 nm (in equal number) Which of these distributions should I use?

  19. d(intensity) > d(volume) > d(number)

  20. Direct determination of the number-weighted mean radius and polydispersity from dynamic light-scattering data Philipus et al.,Applied Optics, 45, 2209 (2006) We find that converting intensity-weighted distributions is not always reliable, especially when the polydispersity of the sample is large.

  21. Reference Dynamic Light Scattering:An Introduction in 30 Minutes, Malvern, http://www.malvern.co.uk/common/downloads/campaign/MRK656-01.pdf

  22. HOMOGENEIZAÇÃO À ALTA PRESSÃO

  23. Ativo + Lipídio fundido Homogeneização a frio Homogeneização a quente Solidificação (nitrogênio líquido) Solução de tensoativo (quente) (sob alta agitação) Moído (micropartículas lipídicas) Agitação Solução de tensoativo (fria) Pré-emulsão Micro-suspensão Homogeneizado à alta Pressão

  24. Homogeneização à Alta Pressão • Rápido e Fácil • Fácil escalonamento - 99% de reprodutibilidade em escala industrial • Evita contaminação no processo de homogeneização

  25. Espectroscopia de Correlação de Fótons

  26. Espectroscopia de Correlação de Fótons Diâmetro

  27. Espectroscopia de Correlação de Fótons Potencial Zeta

  28. Rápido e Fácil • Fácil escalonamento - 99% de reprodutibilidade em escala industrial • Evita contaminação no processo de homogeneização

  29. Dingler e Gohla, J.Microencapsul. 19, 11-16 (2002).

  30. 500 bar 3 ciclos Sakulkhul et al., Proceedings of the 2nd IEEE International ( 2007)

  31. MICROSCOPIA ELETRONICA DE VARREDURA (SEM)

More Related