1 / 50

Introducción al Análisis y Visualización de Datos Climáticos con NCL Ángel G. Muñoz S.

Introducción al Análisis y Visualización de Datos Climáticos con NCL Ángel G. Muñoz S. Centro de Modelado Científico (CMC). La Universidad del Zulia. Venezuela. agmunoz@cmc.org.ve.

sarah
Download Presentation

Introducción al Análisis y Visualización de Datos Climáticos con NCL Ángel G. Muñoz S.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introducción al Análisis y Visualización de DatosClimáticos con NCL Ángel G. Muñoz S. Centro de ModeladoCientífico (CMC). La Universidad del Zulia. Venezuela. agmunoz@cmc.org.ve

  2. Aknowledgements (Andes)Euselyne Sebrian Raúl Mejía Siulluz ReverolBryan Jordan Juan Bazo Xandre ChourioRonald Pacheco Carmen Reyes SEMETFAVCristina Recalde Gualberto Carrasco IDEAMJaime Cadenas Yaruska Castellón INAMHIEstatio Gutiérrez Juan Quintana SENAMHI PerúLuis Monterrey Claudia Villarroel SENAMHI BoliviaRamón Velásquez Avel Urdaneta DMChGloria León Marco Paredes CIIFEN – CPPS Franklyn Ruiz Joaquín Díaz U. CatólicaRainer Schimtz Bolivar Erazo U. Chile -- UMSAOscar Chimborazo Alexander Rojas

  3. Aknowledgements (North America)Walter Baethgen Lisa Goddard David DeWittSimon Mason Anthony Barnston Liqiang SunGilma Mantilla Daniel Ruiz IRIThomas Hopson Lawrence Buja Barbara BrownMercy Borbor Jim McCaa NCARZack Subin Berkeley U.Eric Salathé Washington U.

  4. Outline+ Introduction - CMC @ Zulia University. Venezuelan Observatory+ El Observatorio Andino: - Why? What? Who? Goals and objectives - A brief overview of some “products” - Statistical Downscaling - Dynamical Downscaling - Wiki

  5. CMC - Zulia University

  6. CMC - Zulia University

  7. CMC: e pluribus unum Geociencias Electrónica Molecular SistemasDinámicos Astronomía y FísicaTeórica Nanociencias Oceanografía Auditorio Contaminación Acuática Simulgraf Investigación Digital Redes y Telemática

  8. Observatorio AndinoWhy?* Andes population: 120 million people* Andes: + more than 7,000 km length, + typically 200 km wide,+ 4,000 m average altitude

  9. Observatorio AndinoWhy?* Low station density* Low quality data records* About 30 years of data in best cases* Heterogeneous methodologies for data processing

  10. Observatorio AndinoWhat?A regional initiative that aims to provide different scientific tools that may help the decision makers toimprove Risk Management and Early Warning Systems

  11. Who? MIEMBROS

  12. Observatorio AndinoGoals:+ Monitor environmental variables+ Improve Forecast Tools+ Homogenize methodologies+ Capacity building+ Regional collaboration+ Useful information

  13. Observatorio Andino2010-2012 Objectives:+ Improve Weather and Seasonal Forecast in the Andean Countries+ Standardize tools and methodologies: - Forecast- Validation/Verification- Data processing+ Build capacity-Trainings

  14. Some experimental products

  15. El Panorama

  16. Observatorio Andino de Eventos Extraordinarios ONE2 PRODUCTOS

  17. Observatorio Andino de Eventos Extraordinarios ONE2 PRODUCTOS

  18. Observatorio Andino de Eventos Extraordinarios ONE2 PRODUCTOS

  19. Observatorio Andino de Eventos Extraordinarios ONE2 PRODUCTOS

  20. Observatorio Andino de Eventos Extraordinarios OAE2 CARIBE: TSM y Corrientes

  21. CAVeAT: TELECOMUNICACIONES

  22. CAVEL: LEMNA

  23. Febrero 2005 Febrero 2006 Junio 2007 Septiembre 2008 Abril 2009 CAVEL: LEMNA

  24. Producto: Mapasespaciales de ocurrencia de Malaria (puedehacersepara dengue, fiebreamarilla, etc.)

  25. Producto: Mayor ocurrencia Mapasespaciales de ocurrencia Menorocurrencia Proyecto: PredicibilidadMaláricapara la costa del Ecuador. Autores: Ángel G. Muñoz S. (Centro de ModeladoCientífico) y Cristina Recalde (ServicioMeteorológico del Ecuador)

  26. Datasets

  27. CRESSMAN + CRU + POISSON

  28. CRESSMAN + CRU + POISSON

  29. CRESSMAN + CRU + POISSON

  30. CRESSMAN + CRU + POISSON

  31. CLIMATOLOGÍAS

  32. STANDARD DEVIATION

  33. Dynamical Downscaling

  34. CAM_CMC (2 tier) tier-1: P-SST, CFS_SST, CA_SST LEVEL I Dynamical Downscaling (CMM5, CWRF, RSM, RegCM, ETA)‏ LEVEL II * Hydrological Models (VIC, NOAH, RUC, CLM) * Climate and Health (e.g. Malaria, dengue) * CAVEAT, CAVEL ‏ LEVEL III Muñoz et al., 2010. BAMS: http://journals.ametsoc.org/doi/abs/10.1175/2010BAMS2958.1

  35. See Muñoz et al., 2010. BAMS: http://journals.ametsoc.org/doi/abs/10.1175/2010BAMS2958.1

  36. OBSERVATORIO ANDINO

  37. Observatorio Andino de Eventos Extraordinarios ONE2 Observatorio Andino CPTEC-Brasil MedidasObservadas IRI-Nueva York

  38. Standardizing Methodologies* E-mail list support* Wiki

  39. El Panorama

  40. El Panorama

  41. El Panorama

  42. El Panorama

More Related