1 / 57

Modeling of visual form and motion of nano -particles drifting in a polymeric fluid

Technion – Israel Institute of Technology Faculty of Electrical Engineering Control & Robotics Laboratory. Modeling of visual form and motion of nano -particles drifting in a polymeric fluid. Ron Goldberg Yulia Turovski Supervisor: Arie Nakhmani Winter 2011 Date: 07.05.2012. Outline.

sarah
Download Presentation

Modeling of visual form and motion of nano -particles drifting in a polymeric fluid

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Technion – Israel InstituteofTechnologyFacultyofElectricalEngineeringControl & Robotics Laboratory Modeling of visual form and motion of nano-particles drifting in a polymeric fluid Ron Goldberg Yulia Turovski Supervisor: Arie Nakhmani Winter 2011 Date: 07.05.2012

  2. Outline • Motivation & Goals • Previous work on the subject • System description • Modules • Example • Results • Future work

  3. Motivation • Active and controllable drug transport • Few and isolated damaged cells • Healthy tissue unaffected • Super paramagnetic nanoplatforms • Control of platforms via magnetic field • Improve control of nanoplatforms motion • Automatic platforms characteristics and motion analysis

  4. Goals • Automatic analysis of platforms motion and characteristics: • Static noisy background subtraction • Dynamic noise filtering • Platforms detection • Platforms modeling and reconstruction • Motion analysis • MATLAB Environment • Non real time • Short processing time (~minutes)

  5. Input movies • Microscope generated movies • Diffraction patterns • Polymeric fluid • 15 seconds

  6. Example

  7. Previous Works • Previous solution (Nakhmani et al., 2010) • Static noisy background subtraction • Dynamic noise filtering • Platforms detection • Platforms modeling and reconstruction • Motion analysis • Background subtraction: classic & advanced • Unique problem • Collection of issues • Unrelated & uncommon solutions

  8. System Description • Noise cleaning • Static noise (background subtraction) • Dynamic noise (optional) • Particles modeling

  9. Block Diagram Background subtraction Original movie Cleaned movie Per frame • Gaussian fitting process Marking suspicious sub frames • Circles detection Fitting errors Sub frames locations • Particles reconstruction • Sorting Algorithm Sorting results & parameters Circles parameters Reconstructed movie

  10. Module:Background Subtraction • Based on Stauffer & GrimsonGMM algorithm • GMM – Gaussian Mixture Model • Linear superposition • Different expectations, variances and weights

  11. Module:Background Subtraction • Stauffer & Grimson • Threshold operation • Pixel wise analysis • Mixture of Gaussians PDF • Multiple background objects • Continuously updating model’s parameters

  12. Module:Background Subtraction • Improved Implementation • External source • Dynamic number of Gaussians • Results & run time improved

  13. Module:Background Subtraction • Improvement • Merging regular and reversed movies • Learning process • Later frames better cleaned • Linear weight:

  14. Background Subtraction:Example Original frame Cleaned frame

  15. Module:Particles Detection I • Particles’ diffraction patterns • Theoretically: Bessel functions • Practically: Bessel functions & Gaussians • Initial detection • Sub frames • Gaussian fitting • Revaluation error

  16. Module:Particles Detection I • Gaussian fitting • Least squares • Linearization of Gaussian model • Pseudo Inverse • Mean Square Error • Normalized to revaluated amplitude

  17. Module:Particles Detection I • Improved disadvantages • Sensitivity to zeros & low intensities • Saturation • Pseudo inverse • Perfect revaluation for ideal Gaussians • Impressive revaluation & detection capabilities • Excellent reliability • Thousands sub frames per frame • Numbered error messages

  18. Particles Detection I:Example (I)

  19. Particles Detection I:Example (II)

  20. Module:Particles Detection I • Particles detection in frames • Uniform sub frames ( ) • Overlap (50% in each axis) • Filtering out hopeless sub frames • Negative revaluation error image

  21. Particles Detection I:Example (III) Frame 1 Frame 2 Fitting error - frame 2 Fitting error - frame 1

  22. Module:Particles Detection II • Sub frames matching • For circle detection • Sub frames depend on suspicious areas • Revaluation error based algorithm • Clear distinction • Suspicious areas • Size of sub frames

  23. Module:Particles Detection II • Chosen method • Lower threshold • Square sub frame • Exponential formula for area:

  24. Module:Particles Detection II • : Revaluation error • : Lower threshold • : Sub frame’s maximum area • : Sub frame’s minimum area • : Curvature of exponential function • , descending function • Spans sub frames sizes

  25. Particles Detection II:Example Frame 1 Frame 2 Calculated frames of frame 2 Calculated frames of frame 1

  26. Module:Particles Detection II • Good compatibility with particles • Size • Location • Multiple sub frames dealt by sorting algorithm

  27. Module:Circles Detection • Centers and radii • Basis for particles modeling • Popular problem • Many circles detection algorithms exist • Chosen solution from external source • Chosen algorithm • Gray scale input images • Based on circular Hough transform

  28. Module:Circles Detection • Circular Hough transform • Method for detecting shapes in images • Basic transform detects straight lines • Generalization to circles & ellipses • Further Generalization to any parametric shape • Shapes detected in parameter space • Chosen algorithm enables control of: • Allowed asymmetry • Sensitivity to concentric circles

  29. Module:Circles Detection • Suitable solution • Revaluation error based detection • Sub frames matching for suspicious areas • On each sub frame • Chosen algorithm is performed • Uniform parameters set • Circles data is accumulated

  30. Circles Detection:Example Frame 1 Frame 2

  31. Module:Sorting Algorithm • Overlap causes need to cross data from different structures Reconstructed frame Original frame

  32. Module:Sorting Algorithm • Sorts to Gaussians and Besselians • Considers all circles detected • Handles structures separately • Each structure can contain several particles • Initial & temporary sorting • Crosses data from different structures • Filtering out resembling circles • Final sorting

  33. Module:Sorting Algorithm • Determines equivalent centers for Besselians • Based on two largest radii • Linear weight • Bigger weight for larger circle

  34. Sorting Algorithm:Example (I) Circles frame Sorted circles frame

  35. Sorting Algorithm:Example (II) Circles frame Sorted circles frame

  36. Sorting Algorithm:Example (II) Reconstructed frame Original frame

  37. Sorting Algorithm:Example (III) Frame 1 Frame 2

  38. Module:Particles Reconstruction • Based on sorted circles • Gaussian particles • Least squares Gaussian fitting • Same algorithm used for particles detection • Selected sub frames • Sub frames’ sizes determined by circles data

  39. Module:Particles Reconstruction • Besselian particles • Sub frames’ sizes determined by circles data • Besselian formula: • Needed parameters: &

  40. Module:Particles Reconstruction • : • Zeros of Besselian known • Detected circles are zero contours • computed using smallest circle’s radius • : • Common Besselians: • Truncated main lobe • Just one ring

  41. Module:Particles Reconstruction • : • Reconstruction based on first ring: • Analytic function’s mean known • First ring’s mean computed • Comparison of both gives Analytic Function First ring

  42. Particles Reconstruction:Example (I) Original particle Detected circles Original particle’s first ring Reconstructed particle

  43. Particles Reconstruction:Example (II) Reconstructed frame Original frame

  44. Example

  45. Results • System’s products • Reconstructed movie • Circles’ data • Limited quantitative analysis • Qualitative analysis • Satisfactory results • Unsatisfactory results

  46. Quantitative analysis Frame 1 Frame 2

  47. Quantitative analysis Frame 1 Frame 2 Frame 1 reconstructed Frame 2 reconstructed

  48. Quantitative analysis • Centers of mass • Manual radii calculation • Frame 1: • 16 particles • 9 correct detections • 7 misses • 6 false detections • Mean distance: 1.32 • Distance standard deviation: 0.96 • Frame 2: • 13 particles • 12 correct detections • 1 miss • 1 false detection • Mean distance: 2.75 • Distance standard deviation: 2.16

  49. Qualitative analysis Original Frame • Satisfactory results Cleaned Frame Reconstructed Frame

  50. Qualitative analysis • Impressive reconstruction • Conspicuous & small particles • Inconspicuous & weak particles • Asymmetric & imperfect particles • Particles in noisy environment • Reconstruction algorithm corrects detection algorithm’s faults.

More Related