1 / 63

Progressive Simplicial Complexes

Progressive Simplicial Complexes. Jovan Popovic Carnegie Mellon University. Hugues Hoppe Microsoft Research. {f 1 } : { v 1 , v 2 , v 3 } {f 2 } : { v 3 , v 2 , v 4 } …. connectivity. {v 1 } : ( x,y,z ) {v 2 } : ( x,y,z ) …. geometry.

sarai
Download Presentation

Progressive Simplicial Complexes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Progressive Simplicial Complexes Jovan Popovic Carnegie Mellon University Hugues Hoppe Microsoft Research

  2. {f1} : { v1, v2 , v3 }{f2} : { v3 , v2 , v4 }… connectivity {v1} : (x,y,z){v2} : (x,y,z)… geometry {f1} : “skin material”{f2} : “brown hair”… face attributes Triangle Meshes

  3. {f1} : { v1, v2 , v3 }{f2} : { v3 , v2 , v4 }… connectivity {v1} : (x,y,z){v2} : (x,y,z)… geometry {f1} : “skin material”{f2} : “brown hair”… face attributes Triangle Meshes corner attrib. {v2,f1} : (nx,ny,nz) (u,v){v2,f2} : (nx,ny,nz) (u,v)…

  4. Complex Models • Rendering • Storage • Transmission 232, 974 faces

  5. Previous Work • Model M=(K,V,D,S) • Progressive mesh representation

  6. (optimization) Simplification: Edge collapse ecol(vs ,vt , vs) ’ vt vl vl vr vr vs ’ vs 13,546 500 152 150 faces Mn M175 M1 M0 ecoln-1 ecol0 ecoli

  7. 150 152 500 13,546 ^ Mn=M M1 M175 M0 M0 vspl0 … vspli … vspln-1 … vspli … vspl0 vspln-1 Progressive Mesh (PM) representation Previous Work • Progressive Meshes [Hoppe, ‘96]

  8. vspl0 vspl1 vspli-1 vspln-1 Mi Mn Application: Progressive transmission Transmit records progressively: time M0 Receiver displays: M0 (~ progressive GIF & JPEG)

  9. 3,478 M0 Mn Mi ~400K faces/sec! ~400K faces/sec! Application: Continuous-resolution LOD From PM, extract Mi of any desired complexity. 3,478 faces? M0 vspl0 vspl1 vspli-1 vspln-1 Mi

  10. PM Features • Continuous LOD sequence • Smooth visual transitions (Geomorphs) • Progressive transmission • Space-efficient representation

  11. Would also like: PM Restrictions • Supports only “meshes” (orientable, 2-dimensional manifolds)

  12. M0 Mn PM Restrictions • Supports only “meshes” (orientable, 2-dimensional manifolds) • Preserves topological type

  13. 2,522 8,000 167,744 PM Restrictions • Supports only “meshes” (orientable, 2-dimensional manifolds) • Preserves topological type M0 Mn … Mi …

  14. PM Restrictions • Supports only “meshes” (orientable, 2-dimensional manifolds) • Preserves topological type • minimal vertex num of closed g genus mesh 10 10 7 4

  15. PM Restrictions • Volumetric data :

  16. PM edge collapse(ecol) vertex split(vspl) Progressive Simplicial Complexes (PSC)

  17. PM PSC edge collapse(ecol) vertex unification(vunify) vertex split(vspl) Progressive Simplicial Complexes (PSC)

  18. PM edge collapse(ecol) vertex split(vspl) Progressive Simplicial Complexes (PSC) PSC vertex unification(vunify) generalized vertex split(gvspl)

  19. PSC Representation arbitrary simplicial complexes ^ Mn=M M1 M22 M116 gvspl1 … gvspli … gvspln-1 PSC representation

  20. Abstract simplicial complexes (ASC)

  21. Abstract simplicial complexes (ASC)

  22. Abstract simplicial complexes

  23. Geometric vs toplogical realizations

  24. Graph representation. • First level – principle simplices • discrete attributes

  25. Abstract simplicial complexes Manifold-adjecent Not manifold-adjecent

  26. bi s s’ ai ai

  27. * MN – manifold adjacent neighbors

  28. Connectivity Encoding case (1) case (2) case (3) case (4) 0-dim undefined undefined 1-dim 2-dim

  29. Geomorps. (smooth transform.)

  30. ^ M V K Simplicial Complex

  31. ^ M Simplicial Complex V K

  32. ^ M 6 4 2 3 1 7 5 abstract simplicial complex = {1, 2, 3, 4, 5, 6, 7} + simplices {1}, {2}, … 0-dim Simplicial Complex V K

  33. ^ M V K 6 4 2 3 1 7 5 Simplicial Complex abstract simplicial complex = {1, 2, 3, 4, 5, 6, 7} + simplices {1}, {2}, … 0-dim {1, 2}, {2, 3}… 1-dim

  34. ^ M V K 6 4 2 3 1 7 5 Simplicial Complex abstract simplicial complex = {1, 2, 3, 4, 5, 6, 7} + simplices {1}, {2}, … 0-dim {1, 2}, {2, 3}… 1-dim {4, 5, 6}, {6, 7, 5} 2-dim

  35. vunify Generalized Vertex Split Encoding bi ai ai

  36. ai gvspli = {ai}, Generalized Vertex Split Encoding vunify bi ai gvspl ai

  37. Connectivity Encoding case (1) case (2) case (3) case (4) 0-dim undefined undefined 1-dim 2-dim

  38. Connectivity Encoding case (1) case (2) case (3) case (4) 0-dim undefined undefined 1-dim 2-dim

  39. Connectivity Encoding case (1) case (2) case (3) case (4) 0-dim undefined undefined 1-dim 2-dim S

  40. Generalized Vertex Split Encoding 4 0-simplices vunify 3 bi 2 4 ai ai 5 gvspl 1 ai gvspli = {ai},

  41. Generalized Vertex Split Encoding vunify 3 bi 2 4 ai 5 gvspl ai 1 gvspli = {ai}, 4 14223 1-simplices

  42. Generalized Vertex Split Encoding vunify 2 bi ai 1 gvspl ai gvspli = {ai}, 4 14223 12 2-simplices

  43. Generalized Vertex Split Encoding vunify bi ai gvspl ai gvspli = {ai}, 4 14223 12 connectivity S

  44. Generalized Vertex Split Encoding vpos vunify bi gvspl ai gvspli = {ai}, 4 14223 12,

  45. Generalized Vertex Split Encoding vpos vunify 2 3 bi 2 4 1 5 gvspl ai 1 gvspli = {ai}, 4 14223 12, • If a simplex has split code c in{1, 2} , all of its parents have split code c. • If a simplex has split code 3, none of its parents have split code 4.

  46. 1 1 1 1 1 1 1 2 2 22 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 Connectivity Encoding Constraints vunify 2 3 2 4 1 5 gvspl 1 1 2 3 4 5 1 2

  47. Space Analysis • Average 2D manifold mesh n vertices, 3n edges, 2n triangles • PM representation n ( log2n + 4 ) bits • PSC representation n ( log2n + 7 ) bits

More Related