1 / 33

A brief Introduction to Automated Theorem Proving

A brief Introduction to Automated Theorem Proving. Theoretical Foundations, History and the Resolution Calculus for classical First-order Logic Uwe Keller. Content. Intoduction Motivation & History Theorem Proving, ATP and Calculi Foundations FOL, Normalforms & Preprocessing, Metaresults

satin
Download Presentation

A brief Introduction to Automated Theorem Proving

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A brief Introduction to Automated Theorem Proving Theoretical Foundations, History and the Resolution Calculus for classical First-order Logic Uwe Keller

  2. Content • Intoduction • Motivation & History • Theorem Proving, ATP and Calculi • Foundations • FOL, Normalforms & Preprocessing, Metaresults • Resolution • Basic calculus, Unification • Refinements, Redundancy • Decision procedures • Chain Resolution • A Variant of Resolution for the Semantic Web • Demo

  3. Part I:Introduction Motivation & History Theorem Proving, ATP and Calculi

  4. (automated) Deduction Modelling Logic and Theorem Proving Real-world description in natural language. Mathematical Problems Program + Specification Formalization Syntax (formal language). First-order Logic, Dynamic Logic, … Semantics (truth function) Calculus (derivation / proof) Correctness Valid Formulae Provable Formulae Completeness

  5. How did it start … • Results from first-half of the 20th century in mathematical logic showed … • we can do logical reasoning with a limited set of simple (computable) rules in restricted formal languages like First-order Logic (FOL) • That means computers can do reasoning! • Implementation of ATP • First: Computers where needed :- ) • AI as a prominent field: Reasoning as a basic skill! • Mid 1950‘s first attempts to implement an ATP • Today • (A)TP is no longer only a part of main stream AI • Central shared problem: How to represent and search extremely large search spaces!

  6. A rough timeline in ATP … • before 1950: Proof-theoretic Work by Skolem, Herbrand, Gentzen and Schütte • 1954: First machine-generated Proof (Davis) • 1955ff: Semantic Tableaus (Beth, Hinitkka) • 1957: First machine-generated Proof in Logic Calculus (Newell & Simon) • 1957: Lazy substitution by free (dummy) Vars (Kanger, Prawitz) • 1958: First prover for Predicate Logic (Prawitz) • 1959: More provers (Gilmore, Wang) • 1960: Davis-Putnam Procedure (Davis, Putnam, Longman) • 1963: Unification (J.A. Robinson) • 1963ff: Resolution (J.A. Robinson); Inverse Method (Maslov) • 1963ff: Modern Tableau Method (Smullyan, Lis) without Unification • 1968: Modelelimination (Loveland), with Unification • 1970ff: PROLOG (Colmerauer, Kowalski), Refinements of Resolution • 1971: Connection Method (Bibel), Matings (Andrews) with Unification • 1985: ATP in non-classical logics, Renaissance of Tableaux Methods • 1987: Tableaus with Unification • 1993ff: Renewed interest in Instance-based Methods: DPLL, Modelevolution • …

  7. Theorem Proving • Given • a formal language (or logic) L • a calculus C for this language (= set of rules) • a conjecture S and a set of assumptions or axioms A in the language L • Determine • Can we construct a proof for S (from A) in calculus C? • Logic = Syntax + Semantics + Calculus • TP = Proof-search in C (Huge search problem) • Correctness and completeness of Calculi essential properties • Calculus = Non-deterministic Algorithm • Central problem in ATP: How to implement a non-deterministic algorithm „efficiently“ on a deterministic machine :- )

  8. Theorem Proving (II) • Research areas • Interactive / tactic TP vs. Automated TP • Classical Logic vs. Non-classical logics • Calculi for … • ATP - General principle: Refutation • Resolution, Tableau, Inverse Method, Instance-based Methods • ITP – General principle: Proof situation / context • Sequent Calculi • others – General principle: Generation from Axioms • Hilbert-style Calculi • Central difference: • What are the elements in a proof & what is a proof?

  9. Main TP Applications • Main Applications • Software & Hardware Verification • Theorem proving in Mathematics • Query answering in rich knowledge bases (Ontologies) • Verification of cryptographic protocols • Retrieval of Software Components • Reasoning in non-classical Logics • Program synthesis … • … many systems implemented • ATP: Vampire, Otter, Spass, E-SETHEO, Darwin, Epilog, SNARK, Gandalf … • ITP: Isabelle/HOL, Coq, Theorema, KeY-Prover …

  10. Why is FOL of special interest in the ATP community ? • There are less & more expressive logics than FOL • Classical Propositional Logic, Modal Propositional Logic, Description Logics, Temporal Propositional Logic • Higher-order Predicate Logics, Dynamic Predicate Logics, Type Theory • Research in ATP mainly focused on FOL • FOL is very expressive, many real-world problems can be formalized in FOL • FOL turned out to be the most expressive logic that one can adequately approach with ATP techniques

  11. Example … • Theorem in (elementary) Calculus • Nullstellensatz: Every function which is continous over a closed interval I=[a,b] must take the value 0 somewhere in I if f(a) <= 0 and f(b) >= 0 • Proof idea: Consider the Supremum l of set M = {x : f(x) <= 0, a<=x<=b} and show that f(l) = 0

  12. Example (II) … • Formalization • Compact (only LEQ) • Redundancy-free • Specific definitions • Continous functions • Main idea of proofis already encoded • Use Supremum • Can be done by anATP system • … but without properFormalization ?!? • ATP better than humanprover? Robbins Problem in Algebra • Intelligent Proving vs.Combinatorical proving

  13. Part II:Foundations FOL, Normalforms & Preprocessing, Metaresults

  14. Classical First-order Logic (FOL) • Syntax • Signature § • Function Symbols, Predicate Symbols, Arity, logical Connectives, Quantors • Terms (over §), Atomic Formulae (over §), Formluae (over §) • Definition relative to the signature § of the predicate logic • Semantics • First-order structure / interpretation S = (U,I) • Universe U + Signature-Interpretation I • Constants I(c) = element of U • Functionsymbols I(f) = total functions on U • Relationsymbols I(R) = relation on U • Logical connectives and quantors in the usual way • Definition relative to the signature § of the predicate logic

  15. Classical FOL (II) • Model of a statement • An interpretation S = (U,I) is called a model of a statement s iff valS(s) = t • What does it mean to infer a statement from given premisses? • Informally: Whenever our premisses P hold it is the case that the statement holds as well • Formally: Logical Entailment • For every interpretation S which is a model of P it holds that S is a model of S as well • Special case: Validity – Set of premisses is empty • Logical entailment in a logic L is the (semantic) relation that a calculus C aims at formalizing syntactically (by means of a derivability relation)! • Logical entailment considers semantics (Interpretations) relative to a set of premisses or axioms!

  16. Normal Forms • What is a normal form? • Why are they interesting? • Relation to ATP? • Conversion of input to a specifc NF my be required by a calculus (e.g. Resolution) )Preprocessing step • ATP in a sense can be seen as a conversion in a NF itself, borderline is fuzzy in a sense • Normalforms in FOL • Negation Normal Form • Standard Form • Prenex Normal Form • Clause Normal Form (in a sense a „logic free“ form) • There are logics where certain NF do not exist, like CNF in a Dynamic First-order Logic • Certain calculi then can not be applied in these logics!

  17. Negation Normal Form • A formula is in Negation NF (NNF) iff. it contains no implication and no bi-implication symbols and all negation symbols occur only as part of a literal (directly in front of atomic formulae) • How to achieve this NF ? • Replace implication and bi-implication by their definition (in terms of Æ and Ç) • Move negation symbols inside to atomic formulae • De Morgan laws • Dualize quantifiers when moving negation symbols over a quantor • Eliminate multiple negations • All these syntactical transformations generate semantically equivalent formulae • Example

  18. Standard Form • A formula A is in Standard Form if no variable x in A occurs both bound and free and no bound variable is used as a quantor variable for multiple subformulae • How to generate this NF? • Bounded renaming of quantor variables and the respective occurrences • Transformed formulae is semantically equivalent to original one • Example (8 x P(x) Æ Q(z)) ! (9 x R(x) Ç9 z (P(z) Æ Q(z)))

  19. Prenex Normal Form • A formula A is in Prenex NF iff. it is of the form A = Q1x1 … Qnxn B where Qk is a universal or existential quantor and B contains no quantors. B is called the Matrix of A • How to construct this NF? • Transform A in NNF and Standard Form • Move iteratively outermost quantor to the outside until it reaches another quantor. Quantors may not cross quantors of different sort (in-scope relation between quantor occurrences may not be changed) • This transformation generates a formulae which is logically equivalent to the original one. • Example

  20. Clause Normal Form • A formula A is in Clause NF iff. it is in PNF, closed, the prefix only contains universal quantors and the Matrix is on conjunctive normal form. • In other words: A = 8 x1 … 8 xn ( (L1,1Ç … Ç L1,m1) Æ … Æ (Lk,1Ç … Ç Lk,mk)) where Li,j is a literal (negated or positive atomic formula) • How to construct this NF? • Transform A in NNF and Standard Form • Transform result in PNF • Remove existential quantors by Skolemization (Function terms) • Apply Distributivity laws to convert Matrix of the result in conjuntive normal form (conjunction of discjunction of literals) • This transformation results in a formula which is not logically equivalent, but it is satisfiability-preserving (which is enough for the ATP methods later) • Example

  21. Clause Normal Form (II) • A formula A is in Clause NF can be written as A = 8 x1 … 8 xn ( (L1,1Ç … Ç L1,m1) Æ … Æ (Lk,1Ç … Ç Lk,mk)) where Li,j is a literal (negated or positive atomic formula) • Since every formula can be transformed into CNF, the CNF can be seen as „logic free“ representation of a formulae • All quantors are universal, no free variables are allowed -> drop quantors • Matrix is in CNF = Conjunction of Disjunction of Literals -> Model as a Set of Sets of Literals • Example • The sketched transformation to CNF is not optimal • Exponential blowup possible (already for NNF) • Syntactical structure of the original formula gets lost • Skolemsymbols have unnecessarily many parameters • Unnecessarily many new skolem systems are introduced • One can improve all these aspects of a transformation to CNF! • Skolemization before PNF transformation, Definitorial CNF for Matrix, Reuse of Skolem functions

  22. Metaresults • Metaresult = Property of a Logic L • Here some metaresults for FOL which form the theoretical foundation of ATP (carry over to many other logics as well) • Deduction Theorem • If M [ s ² s‘ then M ² s‘ ! s • Logical entailment can be reduced to validity • Proof by contradiction • If M is a set of closed formulae thenM ² s iff. M [ {¬s} is unsatisfiable (i.e. has no model) • Logical entailment can be reduced to unsatisfiability checking • Refutation can be used as a universal principle for inference in FOL

  23. Metaresults (II) • Complexity of logical entailment, validity and satisfiability • Propositional Logic • Logical entailment (²-relation) is decidable, Satisfiability too • Set of valid formulae is co-NP-complete • Set of satisfiable formulae is NP-complete • First-order Predicate Logic • Logical entailment / validity / satisfiability is undecidable • Set of valid formulae is semi-decidable (recursively enumerable) • Set of satisfiable formulae is not recursively enumerable

  24. Metaresults (III) • Term Interpretations and Herbrand Theorem • S = (U,I) is term-interpretation if U = Term0 • Let Term0 be non-empty. An interpretation S = (U,I) is called Herbrand-Interpretation if • S is term-interpretation and • I(f)(t1,…,tn) = f(t1,…,tn) for all n-ary function symbols f 2 and ground terms t1,…,tn • Herbrand-Modell of s is Herbrand-Intp. I with I ² s • Herbrand-Interpretations are special because they have a simple universe (syntactical) and Terms are basically uninterpreted. Quantifiers then have ground terms as their range! • Computers can deal with such special (syntactical) interpretations, but not with interpretations in general!

  25. Metaresults (IV) • Term Interpretations and Herbrand Theorem • Let M be a set of closed formulae s in Prenex-Normalform that contain no existential quantors (for instance s in CNF) • Let T be a set of terms (over signature ) • T(M) := set of T-instances of M, i.e. replace every occurence of a (universal) variable in any formulae in M with any term in T • Herbrand Theorem • Let Term0 be non-empty and M a set of formulae in Prenex-NF without existential quantors. • Then the following statements are equivalent • M has a model • M has a Herbrand-model • Term0(M) has a model • The last set is a set of formulae in propositional logic

  26. Metaresults (V) • Compactness of FOL • A (possibly infinite) set M of formulae has a model iff every finite subset M‘ ½ M has a model (i.e. is satisfiable) • Combining Compactness with Herbrand‘s Theorem • Let Term0 be non-empty and M a set of formulae in Prenex-NF without existential quantors. • Then M is unsatisfiable iff. T(M) is unsatisfiable for a finite set of ground terms T ½ Term0 • Note that T is a finite set of ground terms over the signature  of the formula set M • No „external“ functions symbols have to be considered! • Allows for using guided substitutions (Unification!)

  27. Metaresults (VI) • That means: logical entailment / validity can be checked • by reduction to unsatisfiabiliy of a set of formulae M‘ • which can done by finding suitable finite (counter)-examples for the quantfied variables such that a contradiction arises • One can only use the Signature  of the given set M‘ to find the counterexamples • Basically this is what all ATP procedures do: Find a finite set of counterexamples (objects) such that a the instance of the orginial set is determined as being • The theorem immediately gives an algorithm for ATP! • Problem: How to construct / find T in the theorem in a clever way?

  28. Part III:The Resolution Calculus Pre-resolution phase: Gilmore‘s Methods, Davis-Putnam Procedure Unification Basic Resolution Calculus Refinements, Redundancy Decision procedures

  29. Pre-Resolution period: Gilmore‘s Method

  30. Pre-Resolution period:Davis-Putnam Procedure

  31. A Revolution in ATP: Robinson‘s Resolution Principle

  32. Part IV:Chain Resolution A Variant of Resolution for the Semantic Web

  33. Part IV:Demo assisted by a Resolution-based ATP System: VAMPIRE

More Related