1 / 28

About OMICS Group

About OMICS Group.

Download Presentation

About OMICS Group

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. About OMICS Group OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology ‘Open Access’, OMICS Group publishes 400 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 300 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

  2. About OMICS Group Conferences OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit. OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

  3. HawkingRadiationfromNon‐stationaryRotatingdeSitterBlackHoleHawkingRadiationfromNon‐stationaryRotatingdeSitterBlackHole Prof.K.YugindroSinghDepartmentofPhysicsManipurUniversity,Imphal‐795003,India

  4. Introduction Classicaltheory: Nothingincludinglightcaneverescapefromablackhole. • R.Penrose (Riv.NuovoCimento1,1969,252):  Aparticleenteringintotheergosphereofarotatingblackholedisintegratesintotwoparticles– (i)Apositiveenergyparticle–escapestoinfinitywithanenergygreaterthanthatoftheoriginalparticle, Anegativeenergyparticlew.r.t.anobserveratinfinity(butpositivelocally)–tunnelsinsidetheblackhole. (ii)

  5. Rotationalenergyandangularmomentumoftheblackholeget • extractedintheprocess • Thepositiveandnegativeenergystatesaretheclassicalcorrespondentsofthepositiveandnegativeenergystatesofaquantizedfield;levelcrossingmightoccurinsidetheergosphereleadingtopossiblepaircreationanddischargefromtheblackhole.(DeruelleandRuffini,Phys.Lett.B.,52B,1974,437) • S.W.Hawking(Nature,248,1974,30;Comm.Math.Phys.43,1975,199): • Blackholesemitparticlesandtheenergyspectrumoftheemittedparticlesisthermal • Hawkingradiationmaybeconsideredtobeproducedbyvacuumfluctuationsneartheeventhorizon.

  6. Apairofparticlesiscreatedjustoutsidethehorizon– • thenegativeenergyvirtualparticletunnelsintotheblackhole • thepositiveenergyvirtualparticleescapestoinfinitywhereitconstitutingapartofthethermalemission. • Hawkingradiationmayalsobeconsideredastunnelingofparticlesacrosstheeventhorizon.AndtheimaginarypartoftheactionofthetunnelingparticleisrelatedtotheBoltzmanfactorforemissionattheHawkingtemperature.(Hartle&Hawking,Phys.Rev.D13,1976,2188;Kraus&Wilczek,Nucl.Phys.B433,1995,403;Parikh&Wilczek,Phys.Rev.Lett.85,2000,5042;(Srinivasan&Padmanabhan,Phys.Rev.D60,1999,24007;Anghebenetal.JHEP05,2005,014;Kerner&Mann,Class.&Quant.Grav. • 25,2008,095014;73,2008,104010)

  7. Non‐zeroandpositivecosmologicalconstant: • StudiesoftypeIasupernova(Perlmutteretal.517,565,1999)andalsooftheanisotropyofthecosmicmicrowavebackgroundradiationsuggestanon‐zero,positivecosmologicalconstant.

  8. Non-stationary rotatingdeSittersolution • Lineelement: 4 [1(u)r ds2 ]du22udr 3R2 2a(u)r4 2 sindud  3r2 2asin2drdR2d2 [(r2a2)2Δa2sin2]R2sin2d2 ‐‐‐‐‐‐‐‐‐(1)

  9. where 4 Δr2 (u)r • a2 3 Rriacos uistheretardedtimecoordinate.

  10. Introducethegeneralizedtortoisecoordinatetransformation(GTCT):Introducethegeneralizedtortoisecoordinatetransformation(GTCT): rr1ln[rrh(u,)] ‐‐‐‐‐‐‐‐‐‐(2) * 2r(u,) h u*uuo *o

  11. Nullsurfacecondition: gFF0  ‐‐‐‐‐‐‐‐‐‐(3) Inthelimit:rrh(uo,o), u uo, o 2  r2 0 Δ2(r2a2)ra2 sin2r ‐‐(4) h h h o h h rrh rh   , where h h  u

  12. Fourroots:  ⎡1 ⎤  ‐‐‐‐‐‐‐(5) r  36r W ⎢ ⎥ h h ⎣2(u) ⎦ where W912a2(u)3H ⎡  ⎤    H12r(1r)4(u) r22a2ra2r2sin2 ⎢h ⎥ h h h h ⎣ ⎦

  13. rh0r: ⎪⎧3 912a2⎪⎫ • When rh ⎨ ⎬ h 2 ⎪⎩ ⎪⎭ (horizonsofstationarydeSitterblackhole) 3 • When a 0: rh   (horizonsofstationarynon‐rotatingdeSitterblackhole)

  14. HamiltonJacobiEquation • Aminimallycoupledscalarfieldφwithmassμ satisfies 2⎞ ⎛ ⎜⎟0 ⎝⎠ ‐‐‐‐‐‐‐(6) 2  exp⎛iS⎞, • Putting whereSistheaction ⎜⎟ ⎝⎠ functional,wegettheHamilton‐Jacobiequationsatisfiedbyaarticleofmassμ:

  15. S ⎞ S ⎞⎛ ⎛  2 0 g ‐‐‐‐‐‐‐(7) ⎜⎟⎜⎟  x x ⎝⎠⎝⎠ • UsingtheGeneralisedTortoiseCoordinateTransformation 2 ⎛⎞ ⎛⎞ S S 2 4(rr)rB {2(rr)r}C0 A ⎜⎟ ⎜⎟ h h h h ⎝r*⎠ ⎝r*⎠ ‐‐‐‐‐‐‐(8) where

  16. 2    Aa2sin2 r 2 2 2 2(rr)1 r 2(a r )rrr h h h h Δr2{2(rr)1}2r2r2; h h h  Ba2sin2r r(a2r2)r{2(rr)1} h h h  (rr amr ramr{2 )1}lrr ; h h h h

  17. Ca2sin22 2aml2 m2sin2 2(r2 a2 cos2). S, (energyoftheparticle) u* lS, (angularmomentumoftheparticle) *  ⎛⎞ m, (aKillingvector) ⎜⎟ ⎝⎠

  18. FromEq.(8): ⎡BB2 AC⎤ S ⎣ ⎦ 2(rrh)rh r* A UsingtheGTCT,theaboveequationreducesto ⎡BB2AC⎤ ⎣⎦ S rh2(rrh)1 ‐‐‐‐‐(9) r A

  19. Forregionsoutsidetheeventhorizon,thecontributiontoactionisreal:Forregionsoutsidetheeventhorizon,thecontributiontoactionisreal: • B2AC0 2 F12F2F30 where ‐‐‐‐‐‐‐(10) 2 ⎤  ⎡ 2 2 2 2 F a sin  (rr)1} r r(a r )r{2 ⎢ ⎥ h h h 1 ⎣ ⎦ • A2a2sin2

  20. ⎡ ⎤ 2 2 2 2 a sin  (rr F  r r(a r )r{2 )1}  ⎢ ⎥ h h h 2 ⎣ ⎦   h ramr{2 (rr )1}lrr • 2Aam] [amr h h h 2 ⎤ ⎥⎦  ⎡  F3⎢amrhramrh{2(rrh)1}lrrh ⎣ A{l2m2sin22(r2a2cos2)}.

  21. Usingequality,thesolutionsare: F F2FF 2 1 3 F1 ‐‐‐‐‐‐(11)  2 • Energystatesofparticlesinthevicinityoftheeventhorizonsatisfy:   or

  22. Thus,thereexistseasofpositiveandnegativeenergystatesofparticlesclosetotheeventhorizon.Thus,thereexistseasofpositiveandnegativeenergystatesofparticlesclosetotheeventhorizon. • Thereexistsaforbiddenenergygapbetweentheseas. • Widthoftheforbiddenenergygapis: 2 2 F2 F1F3  ‐‐‐‐‐‐(11) F1

  23. rrh, Δ0 • At • Thewidthoftheforbiddenenergygapvanishesonthesurfaceoftheeventhorizon. • Thepositiveandnegativeenergyparticlesmightcoexistonthesurfaceoftheeventhorizon. • Energyofaparticleonthesurfaceoftheeventhorizon:  amamrhrhl o  ‐‐‐‐‐‐(12) a2sin2(r2a2) o h

  24. Thewidthoftheforbiddenenergygapandtheenergyoftheparticleonthesurfaceoftheeventhorizondependson:Thewidthoftheforbiddenenergygapandtheenergyoftheparticleonthesurfaceoftheeventhorizondependson: • thecosmologicalconstant,Λ; • positionoftheparticle; • angularmomentaoftheparticleandoftheblackhole; • evaporationrate; • shapeoftheeventhorizon.

  25. ⎡BB2AC⎤ S ⎣ ⎦ rh2(rrh)1 ‐‐‐‐‐(9) r A r2 S(r2,t2;r1,t1)rh{2(rrh)1} r1 [BB2AC] A • Foranon‐rotatingdeSitterblackholeandfor μ=0atθ=0, r ⎛⎞ 1 2 Srh⎜ ⎟dr ⎝rrh ⎠ r1

  26. Theimaginarypartoftheactionisgivenby ImS[emission]irh • Thetunnelingprobabilityis 2r ⎛ ⎞ h exp ⎜ ⎟  ⎝ ⎠ 1 T 2rh (standardHawkingtemperatureofdeSitterblackhole)

  27. ThankYou

  28. Let Us Meet Again We welcome you all to our future conferences of OMICS Group International Please Visit:www.omicsgroup.com www.conferenceseries.com www.pharmaceuticalconferences.com

More Related