1 / 19

Lesson Objective Be able to add, subtract multiply and divide whole and decimal

Lesson Objective Be able to add, subtract multiply and divide whole and decimal numbers without a calculator. What is 23 × 367? Use this result to answer 2.3 x 36.7 0.23 x 3.67 2.3 x 3670 Find: a) 0.3 x 0.2 b ) 2.7 x 1.2

Download Presentation

Lesson Objective Be able to add, subtract multiply and divide whole and decimal

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lesson Objective Be able to add, subtract multiply and divide whole and decimal numbers without a calculator • What is 23 × 367? • Use this result to answer 2.3 x 36.7 • 0.23 x 3.67 • 2.3 x 3670 • Find: • a) 0.3 x 0.2 b) 2.7 x 1.2 • c) 3567 ÷ 4 d) 4837 ÷ 12 • e) 23.6 ÷ 0.03

  2. Given that 12.4 × 4.3 = 53.32 Find the value of: a) 124 × 4.3 b) 62 × 8.6 c) 53.32 ÷ 31 d) 124 × 430

  3. GROUP A • Challenge: 15 mins • How many can you • answer correctly? • 1) 12 x 17 • 2) 23 x 345 • 3) 1.2 x 0.3 • 0.2 x 0.4 • 5) 0.6 x 0.7 • 83710 ÷ 2 • 2364 ÷ 4 • 8) 17622 ÷ 3 • 9) 487 ÷ 11 • 10) 8361 ÷ 7 • 11) 0.6 ÷ 0.3 • 12) 12 ÷ 0.2 • 13) 20 ÷ 0.15 • 14) 0.9 ÷ 0.15 • 15) 1.2 ÷ 0.01 • 16) 24 x 0.12 • 17) 0.5 x 19 • 18) 2.5 ÷ 2.5 • 19) 0.7 ÷ 20 • 20) 1.4 ÷ 30 • GROUP B • Challenge: 15 mins • How many can you • answer correctly? • 1) 12 x 17 • 2) 23 x 345 • 3) 1.2 x 0.3 • 0.2 x 0.4 • 5) 0.6 x 0.7 • 83710 ÷ 2 • 2364 ÷ 4 • 8) 17622 ÷ 3 • 9) 487 ÷ 11 • 10) 8361 ÷ 7 • 11) 0.6 ÷ 0.3 • 12) 12 ÷ 0.2 • 13) 20 ÷ 0.15 • 14) 0.9 ÷ 0.15 • 15) 1.2 ÷ 0.01 • 16) 24 x 0.12 • 17) 0.5 x 19 • 18) 2.5 ÷ 2.5 • 19) 0.7 ÷ 20 • 20) 1.4 ÷ 30 • GROUP C • Challenge: 15 mins • How many can you • answer correctly? • 1) 12 x 17 • 2) 23 x 345 • 3) 1.2 x 0.3 • 0.2 x 0.4 • 5) 0.6 x 0.7 • 83710 ÷ 2 • 2364 ÷ 4 • 8) 17622 ÷ 3 • 9) 487 ÷ 11 • 10) 8361 ÷ 7 • 11) 0.6 ÷ 0.3 • 12) 12 ÷ 0.2 • 13) 20 ÷ 0.15 • 14) 0.9 ÷ 0.15 • 15) 1.2 ÷ 0.01 • 16) 24 x 0.12 • 17) 0.5 x 19 • 18) 2.5 ÷ 2.5 • 19) 0.7 ÷ 20 • 20) 1.4 ÷ 30 • GROUP D • Challenge: 15 mins • How many can you • answer correctly? • 1) 12 x 17 • 2) 23 x 345 • 3) 1.2 x 0.3 • 0.2 x 0.4 • 5) 0.6 x 0.7 • 83710 ÷ 2 • 2364 ÷ 4 • 8) 17622 ÷ 3 • 9) 487 ÷ 11 • 10) 8361 ÷ 7 • 11) 0.6 ÷ 0.3 • 12) 12 ÷ 0.2 • 13) 20 ÷ 0.15 • 14) 0.9 ÷ 0.15 • 15) 1.2 ÷ 0.01 • 16) 24 x 0.12 • 17) 0.5 x 19 • 18) 2.5 ÷ 2.5 • 19) 0.7 ÷ 20 • 20) 1.4 ÷ 30

  4. When multiplying: Eg 2.5 × 0.05 When dividing: Eg 0.62 ÷ 0.05

  5. Do these without a calculator: • 0.5 × 4 2) 0.3 × 0.2 3) 12.4 × 0.1 • 1.2 × 0.12 5) 0.4 × 0.08 6) 0.32 • 2.4 × 5.1 8) 6.2 ÷ 0.1 9) 0.4 ÷ 0.2 • 10) 1.2 ÷ 0.4 11) 24 ÷ 0.45 12) 0.06 ÷ 0.30 • 13) 12.4 ÷ 0.25 14) 0.2 ÷ 0.02 15) 4.32 ÷ 0.4

  6. A supermarket sells jars of coffee of the same brand in two different sizes. Which jar gives the better value for money?You must show your working. Answer ................................................. (Total 3 marks)

  7. Being a nice, kind maths teacher Mr B decides to give his Year 10 class some sweets: In the class there are 16 girls and 10 boys. Mr B gives the girls 23 sweets and the boys 15 sweets, who gets the best deal? Show your working!! How many different ways can you answer this question?

  8. Lesson Objective: Know how to find the reciprocal of a number

  9. Eg. Find the reciprocal of these numbers • 6 2) 3/4 3) 0.4

  10. Find the reciprocals of these numbers: • 8 2) 2/9 3) 3/4 4) 0.8 • 5/8 6) 1/7 7) 12 8) 13/4 • 21/3 10) 0.125 11) 0.5 12) 0.3333… • 42/7 14) -2/3 15) -0.25 16) x • x – 3 18) 2.4 19) 4.25 20) -2.02 • 21) x/y 22) 1.4 23) 0.42 24) π

  11. Decimals Worksheet – Problem Solving

  12. Lesson Objective: Learn about limiting sequences and practise our Fraction and Decimal skills.

  13. Limiting Sequences Consider the sequence: 1/2 + 1/4 + 1/8 + 1/16 + ………………… What will this add up to?

  14. Total so far 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 1 2 3 4 5 6 7 8 9 10 Number of Fractions in the sequence

  15. Will the sequence ever reach 1?

  16. Will the sequence ever reach 1? Imagine a frog 1m away from a wall. It always jumps half way to the wall. WALL 1/2 1/4 1/8 1/16 Then the distance jumped will be = 1/2 + 1/4 + 1/8 + 1/16 + ……

  17. In general we say that: 1/2 + 1/4 + 1/8 + 1/16 + ………………… has a limiting value of 1. Meaning that it gets closer to 1 as the number of terms in the sequence increases. What about: 1/3 + 1/9 + 1/27 + 1/81 + ………………… Or 1/4 + 1/16 + 1/64 + 1/256 + ………………… What would the sequence look like that starts with 1/5? Can you find a general result for any starting fraction in the form 1/n?

  18. Litou’s Mean Value Theorem Start with 2 numbers. Eg 15 and 9 We are going to use these to generate a sequence. The 10 and the 6 are the first two numbers in the sequence. 15, 9, ..... , …. , …. , …. , …. , …. , …. , …. Find the next number in the sequence by calculating the mean of the previous 2. Calculate the next eight numbers in the sequence. You may write them as decimals to 2 d.p. What happens to the sequence? Is there any way of predicting this result? Try Starting with 2 different numbers does your result still work?

More Related