1 / 23

6-4

6-4. Properties of Special Parallelograms. Warm Up. Lesson Presentation. Lesson Quiz. Holt Geometry. Warm Up Solve for x . 1. 16 x – 3 = 12 x + 13 2. 2 x – 4 = 90 ABCD is a parallelogram. Find each measure. 3. CD 4. m  C. 4. 47. 104°. 14. Objectives.

saxton
Download Presentation

6-4

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 6-4 Properties of Special Parallelograms Warm Up Lesson Presentation Lesson Quiz Holt Geometry

  2. Warm Up Solve for x. 1.16x – 3 = 12x + 13 2. 2x – 4 = 90 ABCD is a parallelogram. Find each measure. 3.CD4. mC 4 47 104° 14

  3. Objectives Prove and apply properties of rectangles, rhombuses, and squares. Use properties of rectangles, rhombuses, and squares to solve problems.

  4. Vocabulary rectangle rhombus square

  5. A second type of special quadrilateral is a rectangle. A rectangleis a quadrilateral with four right angles.

  6. Since a rectangle is a parallelogram by Theorem 6-4-1, a rectangle “inherits” all the properties of parallelograms that you learned in Lesson 6-2.

  7.  diags. bisect each other Example 1: Craft Application A woodworker constructs a rectangular picture frame so that JK = 50 cm and JL = 86 cm. Find HM. Rect.  diags.  KM = JL = 86 Def. of  segs. Substitute and simplify.

  8. Check It Out! Example 2 Carpentry The rectangular gate has diagonal braces. Find HJ. Rect.  diags.  HJ = GK = 48 Def. of  segs.

  9. Check It Out! Example 1b Carpentry The rectangular gate has diagonal braces. Find HK. Rect.  diags.  Rect.  diagonals bisect each other JL = LG Def. of  segs. JG = 2JL = 2(30.8) = 61.6 Substitute and simplify.

  10. A rhombus is another special quadrilateral. A rhombusis a quadrilateral with four congruent sides.

  11. Like a rectangle, a rhombus is a parallelogram. So you can apply the properties of parallelograms to rhombuses.

  12. Example 3: Using Properties of Rhombuses to Find Measures TVWX is a rhombus. Find TV. WV = XT Def. of rhombus 13b – 9=3b + 4 Substitute given values. 10b =13 Subtract 3b from both sides and add 9 to both sides. b =1.3 Divide both sides by 10.

  13. Example 3 Continued TV = XT Def. of rhombus Substitute 3b + 4 for XT. TV =3b + 4 TV =3(1.3)+ 4 = 7.9 Substitute 1.3 for b and simplify.

  14. Example 4: Using Properties of Rhombuses to Find Measures TVWX is a rhombus. Find mVTZ. mVZT =90° Rhombus  diag.  Substitute 14a + 20 for mVTZ. 14a + 20=90° Subtract 20 from both sides and divide both sides by 14. a=5

  15. Example 4 Continued Rhombus  each diag. bisects opp. s mVTZ =mZTX mVTZ =(5a – 5)° Substitute 5a – 5 for mVTZ. mVTZ =[5(5) – 5)]° = 20° Substitute 5 for a and simplify.

  16. Check It Out! Example 5 CDFG is a rhombus. Find CD. CG = GF Def. of rhombus 5a =3a + 17 Substitute a =8.5 Simplify GF = 3a + 17=42.5 Substitute CD = GF Def. of rhombus CD = 42.5 Substitute

  17. Check It Out! Example 6 CDFG is a rhombus. Find the measure. mGCH if mGCD = (b + 3)° and mCDF = (6b – 40)° Def. of rhombus mGCD + mCDF = 180° b + 3 + 6b –40 = 180° Substitute. 7b = 217° Simplify. b = 31° Divide both sides by 7.

  18. Check It Out! Example 6 Continued mGCH + mHCD = mGCD Rhombus  each diag. bisects opp. s 2mGCH = mGCD Substitute. 2mGCH = (b + 3) Substitute. 2mGCH = (31 + 3) Simplify and divide both sides by 2. mGCH = 17°

  19. A square is a quadrilateral with four right angles and four congruent sides. In the exercises, you will show that a square is a parallelogram, a rectangle, and a rhombus. So a square has the properties of all three.

  20. Helpful Hint Rectangles, rhombuses, and squares are sometimes referred to as special parallelograms.

  21. Lesson Quiz: Part I A slab of concrete is poured with diagonal spacers. In rectangle CNRT, CN = 35 ft, and NT = 58 ft. Find each length. 1.TR2.CE 35 ft 29 ft

  22. Lesson Quiz: Part II PQRS is a rhombus. Find each measure. 3.QP4. mQRP 42 51°

More Related