210 likes | 355 Views
10.3 Vectors in the Plane. Mesa Verde National Park, Colorado. Photo by Vickie Kelly, 2003. Greg Kelly, Hanford High School, Richland, Washington. Warning: Only some of this is review. Quantities that we measure that have magnitude but not direction are called scalars.
E N D
10.3 Vectors in the Plane Mesa Verde National Park, Colorado Photo by Vickie Kelly, 2003 Greg Kelly, Hanford High School, Richland, Washington
Warning: Only some of this is review.
Quantities that we measure that have magnitude but not direction are called scalars. Quantities such as force, displacement or velocity that have direction as well as magnitude are represented by directed line segments. B terminal point The length is A initial point
B terminal point A initial point A vector is represented by a directed line segment. Vectors are equal if they have the same length and direction (same slope).
y A vector is in standard position if the initial point is at the origin. x The component form of this vector is: Different notation:
y A vector is in standard position if the initial point is at the origin. x The component form of this vector is: The magnitude (length) of is:
The component form of (-3,4) P is: (-5,2) Q v (-2,-2)
Then v is a unit vector and is used to indicate direction. The unit vector = If is the zero vector and has no direction.
Vector Operations: (Add the components.) (Subtract the components.)
Vector Operations: Scalar Multiplication: Negative (opposite):
u v u + v is the resultant vector. u+v (Parallelogram law of addition) v u
The angle between two vectors is given by: This comes from the law of cosines.
The dot product (also called inner product) is defined as: Read “u dot v” Example:
The dot product (also called inner product) is defined as: This could be substituted in the formula for the angle between vectors (or solved for theta) to give:
Example: Find the angle between vectors u and v:
Application: Example 7 A Boeing 787 airplane, flying due east at 500mph in still air, encounters a 70-mph tail wind acting in the direction of 60o north of east. The airplane holds its compass heading due east but, because of the wind, acquires a new ground speed and direction. What are they? N E
Application: Example 7 A Boeing 787 airplane, flying due east at 500mph in still air, encounters a 70-mph tail wind acting in the direction of 60o north of east. The airplane holds its compass heading due east but, because of the wind, acquires a new ground speed and direction. What are they? N E u
Application: Example 7 A Boeing 787 airplane, flying due east at 500mph in still air, encounters a 70-mph tail wind acting in the direction of 60o north of east. The airplane holds its compass heading due east but, because of the wind, acquires a new ground speed and direction. What are they? N v 60o E u
Application: Example 7 A Boeing 787 airplane, flying due east at 500mph in still air, encounters a 70-mph tail wind acting in the direction of 60o north of east. The airplane holds its compass heading due east but, because of the wind, acquires a new ground speed and direction. What are they? N We need to find the magnitude and direction of the resultant vectoru + v. v u+v E u
N The component forms of u and v are: v 70 u+v E 500 u Therefore: and:
N 538.4 6.5o E The new ground speed of the airplane is about 538.4 mph, and its new direction is about 6.5o north of east. p