1 / 163

第十四章 色谱法分离原理

第十四章 色谱法分离原理. 第一节 概述. 色谱法是一种重要的分离分析方法,它是根据组分在两相中作用能力不同而达到分离目的的。. 色谱法早在 1903 年由俄国植物学家 茨维特 分离植物色素时采用。 他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果 色素中各组分互相分离形成各种不同颜色的谱带 。这种方法因此得名为 色谱法 。以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义,但仍被人们沿用至今。. s. t. 1941 Martin 和 Synge 提出液-液色谱理论;.

Download Presentation

第十四章 色谱法分离原理

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 第十四章 色谱法分离原理 第一节 概述 色谱法是一种重要的分离分析方法,它是根据组分在两相中作用能力不同而达到分离目的的。

  2. 色谱法早在1903年由俄国植物学家茨维特分离植物色素时采用。 他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。这种方法因此得名为色谱法。以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义,但仍被人们沿用至今。

  3. s t

  4. 1941Martin和Synge提出液-液色谱理论; 1952James和Martin发展了气相色谱; 1956Van Deemter提出速率理论; 1967Kirkland等研制高效液相色谱法; 80年代以后出现毛细管电泳和毛细管电动色谱等一系列新的色谱分析方法。

  5. 在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相;在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相; • 自上而下运动的一相(一般是气体或液体)称为流动相; • 装有固定相的管子(玻璃管或不锈钢管)称为色谱柱 。

  6. 当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。

  7. 从不同角度,可将色谱法分类如下: 1.按两相状态分类 • 气体为流动相的色谱称为气相色谱(GC) 根据固定相是固体吸附剂还是固定液(附着在惰性载体上的一薄层有机化合物液体),又可分为气固色谱(GSC)和气液色谱(GLC)。

  8. 液体为流动相的色谱称液相色谱(LC) 同理液相色谱亦可分为液固色谱(LSC)和液液色谱(LLC)。 • 超临界流体为流动相的色谱为超临界流体色谱(SFC)。 随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这种化学键合固定相的色谱又称化学键合相色谱(CBPC)。

  9. 2.按分离机理分类 • 利用组分在吸附剂(固定相)上的吸附能力强弱不同而得以分离的方法,称为吸附色谱法。 • 利用组分在固定液(固定相)中溶解度不同而达到分离的方法称为分配色谱法。 • 利用组分在离子交换剂(固定相)上的亲和力大小不同而达到分离的方法,称为离子交换色谱法。

  10. 利用大小不同的分子在多孔固定相中的选择渗透而达到分离的方法,称为凝胶色谱法或尺寸排阻色谱法。利用大小不同的分子在多孔固定相中的选择渗透而达到分离的方法,称为凝胶色谱法或尺寸排阻色谱法。 最近,又有一种新分离技术,利用不同组分与固定相(固定化分子)的高专属性亲和力进行分离的技术称为亲和色谱法,常用于蛋白质的分离。

  11. 3. 按固定相的外型分类 • 固定相装于柱内的色谱法,称为柱色谱。 • 固定相呈平板状的色谱,称为平板色谱,它又可分为薄层色谱和纸色谱。

  12. 4. 按照展开程序分类 按照展开程序的不同,可将色谱法分为洗脱法、顶替法、和迎头法。 • 洗脱法也称冲洗法。工作时,首先将样品加到色谱柱头上,然后用吸附或溶解能力比试样组分弱得多的气体或液体作冲洗剂。由于各组分在固定相上的吸附或溶解能力不同,被冲洗剂带出的先后次序也不同,从而使组分彼此分离。流出曲线下图

  13. B A 这种方法能使样品的各组分获得良好的分离,色谱峰清晰。此外,除去冲洗剂后,可获得纯度较高的物质。目前,这种方法是色谱法中最常用的一种方法。

  14. 顶替法是将样品加到色谱柱头后,在惰性流动相中加入对固定相的吸附或溶解能力比所有试样组分强的物质为顶替剂(或直接用顶替剂作流动相),通过色谱柱,将各组分按吸附或溶解能力的强弱顺序,依次顶替出固定相。顶替法是将样品加到色谱柱头后,在惰性流动相中加入对固定相的吸附或溶解能力比所有试样组分强的物质为顶替剂(或直接用顶替剂作流动相),通过色谱柱,将各组分按吸附或溶解能力的强弱顺序,依次顶替出固定相。 很明显,吸附或溶解能力最弱的组分最先流出,最强的最后流出。顶替法的流出曲线如下图

  15. B A 此法适于制备纯物质或浓缩分离某一组分;其缺点是经一次使用后,柱子就被样品或顶替剂饱和,必须更换柱子或除去被柱子吸附的物质后,才能再使用。

  16. 迎头法是将试样混合物连续通过色谱柱,吸附或溶解能力最弱的组分首先以纯物质的状态流出,其次则以第一组分和吸附或溶解能力较弱的第二组分混合物,以此类推。流出曲线如下图迎头法是将试样混合物连续通过色谱柱,吸附或溶解能力最弱的组分首先以纯物质的状态流出,其次则以第一组分和吸附或溶解能力较弱的第二组分混合物,以此类推。流出曲线如下图 该法在分离多组分混合物时,除第一组分外,其余均非纯态,因此仅适用于从含有微量杂质的混合物中切割出一个高纯组分(组分A),而不适用于对混合物进行分离。

  17. 气相色谱(GC) 液相色谱(LC) 超临界流体色谱(SFC) 按流动相分 吸附色谱 分配色谱 离子交换色谱 排阻色谱 按机理分 分类

  18. 柱色谱 平板色谱 按固定相在支持 体中的形状分 纸色谱 薄层色谱 经典液相色谱 高效液相色谱 按分离效率分

  19. 第二节 色谱流出曲线及有关术语 (一)色谱流出曲线和色谱峰 由检测器输出的信号强度对时间作图,所得曲线称为色谱流出曲线。曲线上突起部分就是色谱峰。 如果进样量很小,浓度很低,在吸附等温线(气固吸附色谱)或分配等温线(气液分配色谱)的线性范围内,则色谱峰是对称的。

  20. (二)基线 在实验操作条件下,色谱柱后没有样品组分流出时的流出曲线称为基线,稳定的基线应该是一条水平直线。 (三)峰高 色谱峰顶点与基线之间的垂直距离,以(h)表示。

  21. 色谱峰 信号 进样 空气峰 h 色谱流出曲线 a • 色谱流出曲线和色谱峰 • 基线(a) • 峰高(h)

  22. 进样 信号 tM (四)保留值 1.死时间tM 不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现峰极大值所需的时间称为死时间,它正比于色谱柱的空隙体积,如下图。

  23. 因为这种物质不被固定相吸附或溶解,故其流动速度将与流动相流动速度相近。测定流动相平均线速ū时,可用柱长L与tM的比值计算,即因为这种物质不被固定相吸附或溶解,故其流动速度将与流动相流动速度相近。测定流动相平均线速ū时,可用柱长L与tM的比值计算,即 ū = L/tM

  24. 信号 进样 tR 2. 保留时间tR 试样从进样到柱后出现峰极大点时所经过的时间,称为保留时间,如下图。

  25. 3.调整保留时间tR´ 某组分的保留时间扣除死时间后,称为该组分的调整保留时间, 即 tR´= tR tM 由于组分在色谱柱中的保留时间tR包含了组分随流动相通过柱子所需的时间和组分在固定相中滞留所须的时间,所以tR实际上是组分在固定相中保留的总时间。

  26. 保留时间是色谱法定性的基本依据,但同一组分的保留时间常受到流动相流速的影响,因此色谱工作者有时用保留体积来表示保留值。保留时间是色谱法定性的基本依据,但同一组分的保留时间常受到流动相流速的影响,因此色谱工作者有时用保留体积来表示保留值。

  27. 4.死体积V0 指色谱柱在填充后,柱管内固定相颗粒间所剩留的空间、色谱仪中管路和连接头间的空间以及检测器的空间的总和。当后两项很小可忽略不计时,死体积可由死时间与色谱柱出口的载气流速Fco(cm3·min-1)计算。

  28. V0 = tMFco 式中 Fco为扣除饱和水蒸气压并经温度校正的流速。仅适用于气相色谱,不适用于液相色谱。

  29. 5. 保留体积VR 指从进样开始到被测组分在柱后出现浓度极大点时所通过的流动相的体积。保留时间与保留体积关系: VR= tR Fco

  30. 6.调整保留体积VR 某组分的保留体积扣除死体积后,称为该组分的调整保留体积。 VR = VR V0 = tR Fco

  31. 7.相对保留值r2,1 某组分2的调整保留值与组分1的调整保留值之比,称为相对保留值。 r2,1= tR2  / tR1´= VR2 / VR1 由于相对保留值只与柱温及固定相性质有关,而与柱径、柱长、填充情况及流动相流速无关,因此,它在色谱法中,特别是在气相色谱法中,广泛用作定性的依据。

  32. 在定性分析中,通常固定一个色谱峰作为标准(s),然后再求其它峰(i)对这个峰的相对保留值,此时可用符号表示,即  = tR (i) / tR  (s) 式中tR (i)为后出峰的调整保留时间,所以总是大于1的。相对保留值往往可作为衡量固定相选择性的指标,又称选择因子。

  33. (五) 区域宽度 色谱峰的区域宽度是色谱流出曲线的重要参数之一,用于衡量柱效率及反映色谱操作条件的动力学因素。表示色谱峰区域宽度通常有三种方法。

  34. 1.标准偏差---即0.607倍峰高处色谱峰宽的一半。1.标准偏差---即0.607倍峰高处色谱峰宽的一半。 2.半峰宽Y1/2---即峰高一半处对应的峰宽。它与标准偏差的关系为 Y1/2=2.354 3.峰底宽度Y---即色谱峰两侧拐点上的切线在基线上截距间的距离。它与标准偏差的关系是 Y = 4 

  35. 从色谱流出曲线中,可得许多重要信息: (i) 根据色谱峰的个数,可以判断样品中所含 组分的最少个数; (ii) 根据色谱峰的保留值,可以进行定性分析; (iii) 根据色谱峰的面积或峰高,可以进行定量分析; (iv) 色谱峰的保留值及其区域宽度,是评价色谱柱分离效能的依据; (v) 色谱峰两峰间的距离,是评价固定相(或流动相)选择是否合适的依据。

  36. 色谱分析的目的是将样品中各组分彼此分离,组分要达到完全分离,两峰间的距离必须足够远,两峰间的距离是由组分在两相间的分配系数决定的,即与色谱过程的热力学性质有关。色谱分析的目的是将样品中各组分彼此分离,组分要达到完全分离,两峰间的距离必须足够远,两峰间的距离是由组分在两相间的分配系数决定的,即与色谱过程的热力学性质有关。 但是两峰间虽有一定距离,如果每个峰都很宽,以致彼此重叠,还是不能分开。这些峰的宽或窄是由组分在色谱柱中传质和扩散行为决定的,即与色谱过程的动力学性质有关。因此,要从热力学和动力学两方面来研究色谱行为。

  37. (一)分配系数K和分配比k 1.分配系数K 分配色谱的分离是基于样品组分在固定相和流动相之间反复多次的分配过程,而吸附色谱的分离是基于反复多次的吸附-脱附过程。 这种分离过程经常用样品分子在两相间的分配来描述,而描述这种分配的参数称为分配系数K。

  38. 它(K)是指在一定温度和压力下,组分在固定相和流动相之间分配达平衡时的浓度之比值,即它(K)是指在一定温度和压力下,组分在固定相和流动相之间分配达平衡时的浓度之比值,即 K=溶质在固定相中的浓度/ 溶质在流动相中的浓度 = Cs / Cm

  39. 分配系数是由组分和固定相的热力学性质决定的,它是每一个溶质的特征值,它仅与两个变量有关:固定相和温度。与两相体积、柱管的特性以及所使用的仪器无关。分配系数是由组分和固定相的热力学性质决定的,它是每一个溶质的特征值,它仅与两个变量有关:固定相和温度。与两相体积、柱管的特性以及所使用的仪器无关。

  40. 2.分配比 k 分配比又称容量因子,它是指在一定温度和压力下,组分在两相间分配达平衡时,分配在固定相和流动相中的物质的量比。即 k = 组分在固定相中的物质的量 / 组分在流动相中的物质的量 = ns / nm

  41. k值越大,说明组分在固定相中的量越多,相当于柱的容量大,因此又称分配容量或容量因子。它是衡量色谱柱对被分离组分保留能力的重要参数。k值也决定于组分及固定相热力学性质。它不仅随柱温、柱压变化而变化,而且还与流动相及固定相的体积有关。k值越大,说明组分在固定相中的量越多,相当于柱的容量大,因此又称分配容量或容量因子。它是衡量色谱柱对被分离组分保留能力的重要参数。k值也决定于组分及固定相热力学性质。它不仅随柱温、柱压变化而变化,而且还与流动相及固定相的体积有关。

  42. k = ns / nm =CsVS / CmVm 式中cs,cm分别为组分在固定相和流动相的浓度;Vm为柱中流动相的体积,近似等于死体积。Vs为柱中固定相的体积,在各种不同的类型的色谱中有不同的含义。

  43. 例如:在分配色谱中,Vs表示固定液的体积;在尺寸排阻色谱中,则表示固定相的孔体积。例如:在分配色谱中,Vs表示固定液的体积;在尺寸排阻色谱中,则表示固定相的孔体积。 分配比 k 值可直接从色谱图中测得。 k = (t R – t M ) / t M = tR / t M = VR / V 0

  44. 3. 分配系数K与分配比 k 的关系 K = kVS/VM =k .  其中β称为相比,它是反映各种色谱柱柱型特点的又一个参数。例如,对填充柱,其β值一般为6-35;对毛细管柱,其β值为60-600。

  45. 滞留因子Rs 分配比k值可直接从色谱图测得。设流动相在柱内的线速度为u,组分在柱内线速度为us,由于固定相对组分有保留作用,所以us<u.此两速度之比称为滞留因子Rs。

  46. Rs若用质量分数表示,即 对组分和流动相通过长度为L的色谱柱,其所需时间分别为

  47. 整理式(18-14)~(18-17),可得

  48. 4.分配系数 K 及分配比 k与选择因子α的关系 对A、B两组分的选择因子,用下式表示: α= tR (B) / tR (A) = k(A) / k(B) =K(A) / K(B) 通过选择因子α把实验测量值k与热力学性质的分配系数K直接联系起来,α对固定相的选择具有实际意义。

More Related