270 likes | 286 Views
This study analyzes the drift potential of Venturi, Extended Range, and Turbo Flat-fan nozzles, crucial components in agricultural applications. Factors like spray droplet characteristics, coverage, and drift are evaluated to determine spray efficacy. The study investigates how nozzle design affects drift potential and overall application performance. Learn from the findings to optimize your spraying techniques for improved results.
E N D
Comparison of Drift Potential for Venturi, Extended Range, and Turbo Flat-fan Nozzles Robert Wolf Biological and Agricultural Engineering Dept. Cathy Minihan Department of Agronomy
Nozzle is still an important part of the application process! • Determines the application rate • Determines the uniformity • Determines the coverage • Determines the drift potential
Will determine coverage: • Need knowledge of the product being used. • Systemic • Contact • What is the target? • Soil • Grass • Broadleaf (smooth, hairy, waxy) • Leaf orientation – time of day
Will affect drift: • Movement of spray particles off-target. • Creating smaller spray drops will result in increased drift. • Is it Coverage vs Drift? • What is the answer? $64,000 Question?
Efficacy and Drift Potential is Influenced by: • Size of the Spray Droplets - Volume Median Diameter (VMD) • Droplet Spectrum (Range - big to small) % Volume or Number of droplets less than 200 microns in size
Nozzle Technology Today? • Nozzles designed to reduce drift • Improved drop size control • Emphasis on ‘Spray Quality’
Extended Range Flat-fan: • Tapered edge pattern • 80 and 110 degree fan • Requires overlap - 50 to 60% • 15-60 psi range 80° 110°
Turbo Flat-fan • Turbulence chamber as in the Turbo Flood • Tapered edge, wide angle flat pattern • Designed to work in flat-fan nozzle holder • Uniform spray distribution, 50-60% overlap • Wide pressure range, 15 – 90 psi • Large, drift resistant droplets • Plastic with superior wear characteristics TT XR
Air/Induction – Venturi Nozzle: • Greenleaf – TurboDrop • Air intake venturi section • Mixing Chamber - air and spray solution blended • Pattern tip forms large air-bubble drops • Required Exit tip flow 2X venturi orifice • Better Penetration? • Reduced run-off? • Improved coverage? • Adequate efficacy? • Reduced drift?
XR Flat-fan and Turbo Flat-fan compared to Venturi Style Nozzle5.0 MPH wind at 40 psi XR vs TurboDrop Turbo Flat vs Turbo Drop
1/2 of spray volume = smaller droplets VMD 1/2 of spray volume = larger droplets
Objective of this study: • Field measure the spray droplet characteristics to evaluate the drift potential of a venturi flat-fan nozzle compared to extended range and turbo flat-fan nozzles.
Materials and Methods: Experiments: Exp. 1 and 2 Early and Late Postemergence Grass Exp. 3 and 4 Early and Late Postemergence Broadleaves Location: Manhattan, KS Exp. Design: 2 x 3 x 3 factorial with 4 reps Plot Size: 3 x 9 m with 1.5 m buffer Crop Oats ‘Don’(Exp. 1 and 2) Weeds Velvetleaf, pigweed, and morning glory (Exp. 3 and 4) Visual Ratings: 1, 2, and 4 weeks after treatment Herbicides (2): Paraquat, 0.14 kg/ha Glyphosate, 0.23 kg/ha Application Conditions: Exp. 1Exp. 2Exp. 3Exp. 4 Date: April 19, 2000 May 5, 2000 Aug. 18, 2000 Sept. 1, 2000 Oat/weed Size: 15 cm 51 cm 10 cm 21 cm Temperature: 20 C 25 C 21 C 24C R. H.: 50% 56% 75% 71% Wind: W-NW 8-10 km/h SE 5-8 km/h NE 11-19 km/h N-E 3-10 km/h
Materials and Methods cont.: Spray Tips (3): Extended Range Flat-fan (XR) Turbo Flat-fan (TT) Air Induction Flat-fan (AI) Spray Volumes (3): 47 L/ha (110015 orifice tips) 94 L/ha (11003 orifice tips) 187 L/ha (11006 orifice tips) Application Ground Speed: 10 km/h Spray Pressure: 276 kPa Spray Tip Spacing: 76 cm Canopy Boom Height: 51 cm
DropletScan used to analyze droplets: Water Sensitive Paper Software & lock-key Color Scanner Portable computer Color Printer System Components
What is DropletScan ? • A software program that will allow accurate and rapid measure of spray droplet impressions on water-sensitive paper. • Developed at K-State by Devore Systems - modeled after ‘Crumbscan’, a software program to determine hole sizes in slices of bread.
Important Droplet Statistics: • Dv0.1 (µm) - 10% of the spray volume in drops < number reported • Dv0.5 (µm) - 50% of the spray volume in drops < number reported (also is VMD- volume median diameter) • Dv0.9 (µm) - 90% of the spray volume in drops < number reported • Number of droplets under 200 microns
Important Droplet Statistics: VMD (50%) Operational Area VD0.9 (90%) VD0.1 (10%)
Sample cards: XR TT AI 10 GPA XR TT AI 5 GPA XR TT AI All at 40 PSI 20 GPA
All Treatments – Number of Droplets < 200 Microns 5 GPA 20 GPA 10 GPA
Summary of Findings - Droplet Count under 200 microns: • At 47 L/ha the extended range flat-fans nearly doubled the turbo flat-fans and created more than four times the venturi flat-fans number of droplets less than 200 microns in size. • At 94 L/ha the extended range flat-fans again nearly doubled the turbo flat-fans and more than tripled the venturi flat-fans for number of droplets created under 200 microns.
Summary of Findings - Droplet Count under 200 microns: • At 187 L/ha the differences showed similar trends but were not nearly as pronounced. • Increasing the application volumes for each nozzle type by increasing the nozzle orifice size also reduced the number of driftable droplets. • Venturi nozzle designs reduce the number of droplets created under 200 microns in size when compared to extended range and turbo flat-fan nozzle styles.
XR Flat-fan and Turbo Flat-fan compared to Venturi Style Nozzle5.0 MPH wind at 40 psi XR vs TurboDrop Turbo Flat vs Turbo Drop