70 likes | 77 Views
Learn about Boolean algebra standard forms, including sum-of-products form, and how to convert Boolean expressions to these forms using laws like DeMorgan's and Absorption. Complete with examples for better understanding.
E N D
Department of Computer and Information Science,School of Science, IUPUI CSCI 240 Boolean Algebra Standard Forms Dale Roberts, Lecturer Computer Science, IUPUI E-mail: droberts@cs.iupui.edu
Standard Form • Like regular algebra, Boolean equations can be expressed as a sum of products. Each product is a term of the equation. • Consider the term xyx’z. We define a term to be a Fundamental Product (FP) if it does not repeat any literal. Since our term repeats x, is it not FP. • You can always minimize a term to make it FP.xyx’z = xx’yz = 0yz (which law) = 0 (which law?) • An expression E is sum-of-products form if it is the sum of one or more FPs, none of which is included in another.
Sum-of-Products Form 1. Consider E=xz’ + y’z + xyz’. This is a sum of products, but is not sum-of-products form because xz’ is contained within xyz’. i.e. it can be reduced. (which law?) 2. Consider E=xz’ + x’yz’ + xy’z. This is already sum-of-products form. Any non-zero Boolean expression can be changed to sum-of-products form. (By duality, there is also a product-of-sums form, but it is used less often.)
Converting to Sum-of-Products Form • Use DeMorgan’s Laws and Involution to move complements inside parenthesis until only variables are complemented. • Use distributive law to transform in to sum of products • Use commutative, idempotent, and complement laws to transform each term into 0 or FP. • Use absorption law to make sum-of-products form. Example • Consider E=((ab)’c)’((a’+c)(b’+c’))’ • E=((ab)’’+c’)((a’+c)’+(b’+c’)’) – DeMorgan’s Law • E=(ab+c’)(ac’+bc) – DeMorgan’s and Involution Laws • E=abac’ + abbc +ac’c’ + bcc’ – Distributive Law • E=abc’ + abc + ac’ + 0 – Idempotent and Complement • E=ac’ + abc – Absorption Law
Complete Sum-of-Products Form • A complete sum-of-products form is a sum-of-products form where each term involves all the variables. (Each term will have the same number of literals. • You can add missing variables by multiplying by 1, where 1 is of the form x + x’. • Theorem: Every non-zero Boolean expression can be placed in complete sum-of-products form, and it is unique.
Complete Sum-of-Products Example • Express E(x,y,z) = (x’ + y)’ + x’y in complete sum-of-products form. • E = xy’ + x’y – DeMorgan’s Law.If we didn’t know z was involved, we’d think we were done. • E=xy’(z + z’) + x’y(z + z’) • E=xy’z + xy’z’ + x’yz + x’yz’ – Distributive Law(Don’t simplify using Absorption, or you’ll take it back out of Complete S-O-P form)
Sources • Lipschutz, Discrete Mathematics • Mowle, A Systematic Approach to Digital Logic Design