1 / 30

Laser & Fiber Electronics Group

Laser & Fiber Electronics Group. Institute of Telecommunications, Teleinformatics and Acoustics Wrocław University of Technology. Group members. Head: Professor Krzysztof M. Abramski Staff: Dr. Arkadiusz Antończak Dr. Paweł Kaczmarek Dr. Adam Wąż Dr. Grzegorz Dudzik

scout
Download Presentation

Laser & Fiber Electronics Group

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Laser & Fiber Electronics Group Institute of Telecommunications, Teleinformatics and AcousticsWrocław University of Technology

  2. Group members • Head: Professor Krzysztof M. Abramski • Staff: • Dr. Arkadiusz Antończak • Dr. Paweł Kaczmarek • Dr. Adam Wąż • Dr. Grzegorz Dudzik • Dr. Michał Nikodem (on leave to Princeton University, Department Of Electronics) • PhD students: • Jarosław Sotor • Maciej Nowak • Grzegorz Soboń • Paweł Kozioł • Karol Krzempek • Rafał Lewicki (on leave to Rice University, Laser Science Group) • Natalia Trela (on leave to Heriott-Watt University, Laser and Photonics Applications Group) • 12 MSc students

  3. Our research • Fiber lasers and amplifiers: • MOPA systems • Optical frequency combs • Solid state diode pumped single frequency microchip lasers • Laser micromachining • Laser-fiber vibrometry

  4. 2-stage All-Fiber MOPA setup Experimental setup Output signals (SNR > 50 dB) 4.8 W output power (ŋ = 24%) ~37 dB gain 1540-1570 nm • Features: • Dual-stage all-in-fiber MOPA system • 4.8 W output power (CW mode) • 1550 nm eye-safe region • Signle-frequency tunable (1540 – 1570 nm) • potential source for nonlinear frequency conversion, Tm3+ laser and amplifier pumping P. Kaczmarek, G. Soboń, A. Antończak, J. Sotor, K.M. Abramski, „Fiber-MOPA sources of coherent radiation”, Bulletin of The Polish Academy of Sciences, Vol. 56, Issue 4 (2010)

  5. Self-made additional equipment Laser Diode Temperature Controller Water-cooler Cooling blocks for 3*10W diodes High Power Laser Diode Temperature Controller

  6. 2-stage MOPA – pulsed regime Pulse-shapingeffect 8 ns output pulse Peak power vs. Repetition rate Pulse distortion • Features: • 8 ns pulses • tunable repetition rate (> 10 kHz) • Pulse-shaping system (pulse distortion pre-compensation) • 100 ns flat-top pulses with high energy • potential source for military, LIDAR, free-space telecom, etc. G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, A. Waz, K.M. Abramski, „Pulsed Fiber-MOPA source operating at 1550 nm with pulse distortion pre-compensation”, Optical Fiber Communication Conference and Exposition OFC 2011 paper- in review

  7. 3-stage Fiber-MOPA system • Features: • All-in-fiber design • Large Mode Area (LMA) Erbium-Ytterbium fiber used (25 μm core diameter) • 6 * 35W pumping power (915 nm) • High output power expected (~20W) LMA Fiber Tapered splice Cladding mode-stripper Pump injection system 35W diodes

  8. 169 MHz repetition rate, passively mode locked fiber laser • Features: • nonlinear polarization rotation operation principal • 169 MHz fundamental repetition rate • 1,2m of cavity length (30cm of Er3+ fiber) • 111 fs pulses • 30 mW of average output power • 1550nm working wavelength (Eye-safe region) Michał Nikodem, Krzysztof Abramski, „169 MHz repetition frequency all-fiber passively mode-locked Erbium doped fiber laser,” Optics Communications 283, 109-112 (2010). Michał Nikodem, Grazyna Tomczyk, Aleksander Budnicki, Krzysztof Abramski, „Investigation of passively mode-locked erbium doped fiber ring laser due to nonlinear polarization rotation,” Opto-electronics Review, Vol. 16, No.2, 123-127 (2008).

  9. Optical frequency comb stabilization • Long-term frequency fluctuations less than 0,93 MHz Michał Nikodem, Krzysztof Abramski, „Controlling the frequency of the Frequency Shifted Feedback fiber laser using injection-seeding technique,” Optics Communications 283 (2010), pp. 2202-2205. Michał Nikodem, Ewelina Kluzniak, Krzysztof Abramski, „Wavelength tunability and pulse duration control in frequency shifted feedback Er-doped fiber lasers,” OpticsExpress 17, 3299-3304 (2009).

  10. Single frequency Nd:YAG/KTP laser where: Δn = 0,0844 – is the natural birefringence of KTP (nz - ny), l2 – geometrical length of KTP Antończak Arkadiusz, Sotor Jarosław, Abramski Krzysztof: Single frequency green laser with birefringent filter. W: Proceedings of 2006 8th International Conference on Transparent Optical Networks with 5th European Symposium on Photonic Crystals.., Nottingham, UK, June 18-22, 2006. Vol. 4 / [Ed. M. Marciniak]. Piscataway, NJ : IEEE, cop. 2006.pp. 178-180

  11. Single frequency Nd:YAG/KTP laser • single frequency / TEM00 mode operation, • output power (at pumping power: P808 = 1W):> 50mW @ 532nm~ 4mW @ 1064nm • frequency tune:∆ν0~ 110GHz@1064nm(220GHz@532nm) 110GHz Antończak Arkadiusz, Sotor Jarosław, Abramski Krzysztof: Single frequency microchip solid state diode pumped lasers. Bulletin of the Polish Academy of Sciences. Technical Sciences. 2008, vol. 56, nr 2, s. 113-116

  12. Nd:YAG/BIBO – 473nm for underwater vibrometry • output power @P808 = 1W~ 20mW @ 473nm • good beam quality - TEM00 Antończak Arkadiusz, Sotor Jarosław, Matysiak Mateusz, Abramski Krzysztof: Blue 473-nm solid state diode pumped Nd: YAG/BiB0 microchip laser. Opto-Electronics Review, 2010, vol. 18, nr 1, pp. 71-74,

  13. Microchip laser stabilized byfiber Bragg grating Δλm = 0,35pm/oC => (93MHz/oC) • frequency stability at the level of 10-7, • simple frequency stabilization ofthe laserfor metrological purposes. Antończak Arkadiusz, Sotor Jarosław, Abramski Krzysztof: Single frequency solid state laser stabilized by FBG. W: Proceedings of 2008 10th Anniversary International Conference on Transparent Optical Networks with 7th European Symposium on Photonic Crystals, Athens, Greece, June 22-26, 2008.

  14. Fast Frequency Control of Microchip Lasers fm = 5kHz fm = 10kHz fm = 50kHz fm = 1kHz fm = 100kHz fm = 500kHz fm = 800kHz fm = 1,5MHz Sensitivity X: 5MHz/div, Y: 10dB/div, Ref: -20dBm, UEOM = 10 Vpp Antończak Arkadiusz, Abramski Krzysztof: Frequency control of microchip lasers. W: Joint Conference of the German Society of Applied Optics (DGaO) and the Section of Optics of the Polish Physical Society. 106th Conference of the DGaO, Wrocław, 17-20 May, 2005, Deutsche Gesallschaft fur Angewandte Optik,

  15. Single frequency green (532nm) laser with YVO4 beam displacer - conception Crystals cutting and single frequency laser configuration with YVO4 beam displacer Features: • birefringent filter formed by YVO4 beam displacer and KTP crystal, • possibility of monolithic realization, • resistant to environmental hazards. J.Z. Sotor, A.J. Antończak, K.M. Abramski, “Single-longitudinal mode Nd:YVO4/YVO4/KTP green solid state laser,” Opto−Electronics Review 18(1), 75–79,(2010), J.Z. Sotor, A.J. Antończak, K.M. Abramski, „Single frequency, monolithic solid state laser”, Patent application, P383937, 02.07.2009.

  16. Monolithic single frequency laser Designed and manufactured monolithic laser resonator consist of three crystals bonded together with UV adhesive. Total resonator dimension: • 2x2x10.5mm, • 1x1x10.5mm (extended single frequency operation range) Practical realization of single frequency DPSS laser Experimental set-up of single frequency DPSS laser J.Z. Sotor, G. Dudzik, A.J. Antończak, K.M. Abramski, “Single-longitudinal mode, monolithic, green solid-state laser”, Applied Physics B, (2010), revised and accepted, J.Z. Sotor, A.J. Antończak, K.M. Abramski, „Single frequency, monolithic green DPSS laser”, Photonics West 2010, SPIE, Vol. 7578, 75782J (2010).

  17. Monolithic single frequency laser – parameters a) b) c) d) Features: • single frequency operation temperature range with mode hopping (Fig.a), • output power @532nm up to 160mW (Fig.b), • output power stability ±0.75% (Fig.c), • long term frequency stability 3·10-8 (Fig.d), • Gaussian beam profile with M2 at the level of 1.2 J.Z. Sotor, A.J. Antończak, K.M. Abramski, Single-longitudinal mode miniature, green solid state laser, Europhoton2010, Hamburg 29.08–3.09.2010 J.Z. Sotor, A.J. Antończak, K.M. Abramski, Single frequency monolithic solid state green laser as a potential source for vibrometry systems, 9th Int. Confercnceo n Vibration Measarcments laser and Noncontact Techniques, Ancona 2010

  18. EMF electrooptical sensor based on microchip lasers Spectral analysis in the case of the electric field measurement E = 80V/m and the frequency FRF = 5MHz (X: 20MHz/div) Electric field sensor calibration in TEM line Antończak Arkadiusz, Abramski Krzysztof: Microchip laser antenna, Proceedings of 2005 7th International Conference on Transparent Optical Networks with 4th European Symposium on Photonic Crystals, Barcelona, Spain, July 3-7, 2005. vol. 2 Piscataway, IEEE, pp. 359-362

  19. Laser micromachining • Semiconductors: • Si (silicon), Ge (germanium), GaAs (g allium arsenide), InP (indium phosphide), • Ceramics and glass: • Al2O3 (alumina), AlN (aluminum nitride), LTCC ceramics, fused silica, BK7, etc. • Metals and alloys: • Titanium, tungsten, molybdenum, tantalum, indium, stainless steel, copper, aluminum, • Plastics and Polymers: • Poly-methyl methacrylate (PMMA), Teflon (PTFE), polyamide,

  20. Examples of laser micromachining Laser microdrilling 150μm diameter, silicon 60μm x 60μm square hole in a silicon chip with a thickness of 350μm, micro-holes in fuel injection systems Laser microcutting diamond cutting 0.4 mm thick sapphire tungsten slit 0.01mm thick 0.1mm

  21. Examples of laser micromachining Laser micromilling aluminum block with a group of squares separated 500μm 100μm gap structure 2,5D structure 3D structure 3D diameter 1,4mm Other: micro-antenna applications 50μm holes in the packaging of biomedical microvia through PCB microlenses (polymer)

  22. Laser color marking Red / raspberry color Blue Green Yellow/ gold

  23. Fast prototyping of PCB (Printed Circuit Board) using laser micromachining - without preparation of photographic film For different substrates: a) FR-2 b) CEM-1; c) FR-4 Resolution tested up to 5 mils (~120μm) Technology useful for:circuit boards, RFID,micro-strip antennas,etc.

  24. Idea of single channel laser – fiber vibrometer P. R. Kaczmarek, M. Kazimierski,A. Waz and K. M. Abramski Laser-Fiber Vibrometry/Velocimetry Using Telecommunications Devices Proc. SPIE 5503, pp 329-33, 2004

  25. 4 – Channel Fiber-Laser Vibrometer A. T. Waz, P. R. Kaczmarek and K. M. Abramski Laser-fibre vibrometry at 1550 nm, Meas. Science and Technology vol. 20105301 (8pp), 2009 A. Waz, P. Kaczmarek, M. Nikodemand K. M. AbramskiWDM optocommunication technology used for multipoint vibrometry Proc. SPIE 7098, 2008

  26. Vibrometry signal processing

  27. Data acquisition software

  28. 4 – Channel Fiber-Laser Vibrometer

  29. Green laser vibrometry based on single frequency microchip laser S/N ratio versus laser output power (L = 0.25m) Arkadiusz J. Antończak, Paweł Kozioł, Jarosław Z. Sotor, Paweł R. Kaczmarek, Adam T. Wąż, Krzysztof M. Abramski, Elementary experiments in green laser vibrometry, 9th International Conference on Vibration Measurements by Laser and Noncontact Techniques, Advances and Applications, Ancona, 22-25 June 2010 / Ed. Enrico Primo Tomasini. Bellingham, Wash.: SPIE S/N ratio versus distance to the moving object (PLASER_= 10.5mW)

  30. Laser & Fiber Electronics Group Thank you for your attention!

More Related