1 / 50

Молекулярная биология для биоинформатиков

Молекулярная биология для биоинформатиков. Академический университет Ефимова Ольга Алексеевна. Лекция № 10. Эпигенетика. «Генетика предполагает, а эпигенетика располагает». P . Medawar & J . Medawar. Центральная догма молекулярной биологии: ДНК ------ РНК ------- БЕЛОК

seamus
Download Presentation

Молекулярная биология для биоинформатиков

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Молекулярная биология для биоинформатиков • Академический университет • Ефимова Ольга Алексеевна

  2. Лекция № 10 Эпигенетика «Генетика предполагает, а эпигенетика располагает». P. Medawar & J. Medawar

  3. Центральная догма молекулярной биологии: ДНК ------ РНК ------- БЕЛОК Генотип----------------фенотип ДНК ответственна за хранение, передачу и реализацию наследственной информации

  4. Доимплантационное развитие человека День 1. Стадия зиготы День 2. Эмбрион в стадии дробления 4 бластомера День 3. Эмбрион на стадии дробления 8 клеток. День 4. Морула. 4 День 5. Бластоциста

  5. Классификация стволовых клеток человека в соответствии с потенциалом к дифференцировке (Filip et al., 2004)

  6. Разные судьбы, функции, морфология, «способности» клеток при одинаковом генотипе

  7. Классическая генетика и генетика развития: Изучение связи между изменчивостью генотипа и фенотипа в онтогенезе. Конрад Уоддингтон (1905-1975) Эпигенетика в дополнение к генетике: «исследует явления, при которых генетическая изменчивость не ведет к изменениям фенотипа, а фенотипическая изменчивость, в свою очередь, не всегда может быть объяснена нарушениями генотипа» (Jablonka, Lamb, 2002). Предмет эпигенетики «Исследование причинных взаимодействий между генами и их продуктами, приводящих к формированию фенотипа» (Waddington, 1942). Генотип + эпигенотип = фенотип

  8. Эпигенетическое наследование В более общем смысле, предметом эпигенетики являются явления, связанные с развитием различных фенотипов клеток или организмов на основе одного генотипа. В более узком смысле эпигенетика – раздел генетики, который изучает наследуемые изменения активности генов во время развития организма или деления клеток. Эпигенетическое наследование – наследование паттерна экспрессии генов.

  9. Эпигенетическая регуляция - наследственные и ненаследственные изменения в экспрессии конкретного гена без каких-либо соответствующих структурных изменений в его нуклеотидной последовательности. Эпигенетические явления: импринтинг, эффект положения, особенности структурно-функциональной организации хроматина определенных хромосомных локусов, влияющие на экспрессию генов, интерференция РНК.

  10. ДВА ВИДАИНФОРМАЦИИ В ГЕНОМЕ Генетическая – закодированная в ДНК программа создания живого организма Эпигенетическая (динамическая)– как, где и когда должна быть реализована генетическая информация. Каждый вид информации обеспечен своими системами: Кодирования Хранения Передачи

  11. генетические эпигенетические Изменения • Необратимы (мутации) • Изменения первичной структуры ДНК • Стабильно наследуемые • Обратимы • Не затрагивают изменений первичной структуры ДНК • Бывают долговременные и кратковременные

  12. Молекулярные основы эпигенетики Метилирование ДНК Модификации гистонов Эпигеном - это совокупность всех эпигенетических маркеров, обусловливающих паттерн экспрессию генов в данной клетке.

  13. Посттрансляционные модификации гистонов

  14. Гистоны Н2А, Н2В, Н3 и Н4 формируют октамерные структуры, вокруг которых закручивается нить ДНК, образуя таким образом нуклеосомы

  15. Структура нуклеосомы Аминокислотые остатки гистонов могут подвергаться пост-трансляционным модификациям: ацетилированию, фосфорилированию, метилированию. Модификации аминокислотных остатков гистоновых белков происходят, в основном, в N-терминальных участках, которые расположены за пределами компактного октамера и подвергаются действию различных клеточных сигналов

  16. В зависимости от типа и сайта модификаций аминокислотных остатков, каждая нуклеосома имеет свой «гистоновый код», регулирующий активность транскрипции

  17. Ацетилирование и деацетилирование гистонов • ацетилирование связано с активацией транскрипции • белки, осуществляющие ацетилирование - гистоновые ацетилтрансферазы (НАТ); донор ацетильной группы – ацетил коА • белки, осуществляющие деацетилирование – гистоновыедеацетилазы (HDAC) • Модель модификации гистонов: • ДНК-связывающиеся активаторы привлекают НАТ для ацетилирования нуклеосомных гистонов, а репрессоры привлекают HDAC для деацетилирования гистонов. Эти события приводят к изменению структуры нуклеосом и активации или репрессии транскрипции соответственно.

  18. Эффект ацетилирования – ослабление связи между ДНК и гистонами из-за изменения заряда, в результате чего хроматин становится доступным для факторов транскрипции Сайты ацетилирования: аминогруппы лизиновых остатков в составе боковой цепи гистона

  19. Фосфорилирование и дефосфорилирование гистонов • фосфорилирование связано с активацией транскрипции • белки, осуществляющие фосфорилирование – протеинкиназами; донор фосфата – АТФ • белки, осуществляющие дефосфорилирование – фосфатазы Сайты фосфорилирования: гидроксильные группы серина, треонина и тирозина. В результате фосфорилирования увеличивается негативный заряд.

  20. Метилирование гистонов • Метилируются • Лизин (моно-, ди- и триметилирование) • Агринин (моно- и диметилирование) • Метилирование не приводит к изменению заряда модифицируемого остатка • Эффекты метилирования в зависимости от сайта модификации и количества метильных групп: • Репрессия транскрипции • Активация транскрипции Регуляция транскрипции через молекулы-эффекторы

  21. Метилирование лизинов Осуществляют лизиновые метилтрансферазы - НКМТ SET-домен Донор метильной группы – S-аденозилметионин (SAM) 6 наиболее хорошо описанных сайтов метилирования: на гистоне Н3 (К4, К9, К27, К36, К79) на гистоне Н4 (К20) Деметлирование лизинов LSD1 удаляет метильные группы с Н3К4 JHDM1 – H3K36me1 и me2, JHDM2A – H3K9m1 и me2, JHDM3A – H3K36me3, JMJD2A – H3K9me3.

  22. Роль модификаций в регуляции транскрипции

  23. Метилирование ДНК и связанные с ним процессы

  24. H H N CH3 4 N 3 5 N 2 6 1 O Молекулярные основы эпигенетики RobinHolliday Б.Ф. Ванюшин Впервые определил природу метилируемых последовательностей ДНК у разных видов организмов (1959 г.) Обосновал роль метилирования ДНК в регуляции работы гена. Предложил термин «эпимутация» (1987 г.)

  25. Репрессия транскрипции посредством метилирования ДНК

  26. Взаимосвязь между метилированием цитозина в молекуле ДНК и ацетилированием гистонов

  27. Механизмы инактивации гена в результате метилированияпромоторной области • 1. Метильные группы нарушают ДНК-белковые взаимодействия, выступая в большую бороздку ДНК и препятствуя связыванию специфических транскрипционных факторов. • 2. Метилированные районы ДНК специфически связывают транскрипционные репрессоры. • 3. Метилирование ДНК влияет на структуру хроматина.

  28. Метилирование ДНК в клетке контролирует все (!) генетические процессы, в том числе такие как : Транскрипция (клеточная дифференцировка) Репликация РекомбинацияРепарация Транспозиция генов Инактивация Х-хромосомы

  29. Биологическая специфичность метилирования ДНК: • Видовая (штаммовая) • Тканевая (клеточная) • Органоидная (ядро, митохондрии, пластиды) • Внутримолекулярная (островки метилирования, повторы) • Возрастная • Резкое искажение метилирования ДНК: • отсутствие метильных доноров (рак, гепатома) • суперметилирование ДНК РАК • полное выключение (knockout) ДНК-метилазного гена остановка развития, апоптоз, смерть (без метилирования ДНК жизни нет!)

  30. Семейства ДНК-метилтрансфераз (ДНК-метилаз) млекопитающих: DNMT1 – поддержание метилирования В гаметогенезе изоформы: DNMT1o DNMTp DNMT2 – РНК-метилазная активность (может специфично метилировать цитозин в 38 положении антикодоновой петли тРНК аспарагина); связь между метаболическими процессами и репрограммированием метилирования ДНК DNMT3 – метилирование de novo, регуляторные функции при метилировании DNMT3a DNMT3b DNMT3L SAM – донор метильной группы

  31. De novo метилирование ДНК и сохранение характера метилирования ДНК • Высокометилированые последовательности: • Сателлитная ДНК • Повторяющиеся элементы (в т.ч. транспозоны и их инертные формы) • Уникальная межгенная ДНК • Экзоны генов

  32. Метилирование ДНК метафазных хромосом из мезенхимной стволовой клетки взрослого индивида лимфоцита плода человека 22/24 недель развития Клетки цитотрофобласта хориона легкого печени эмбриона человека 5/6 недель развития N=30 N=49 N=76 N=29 N=32

  33. гомологи хромосомы 1 QFH АТ-5-МеС G-сегментация АТ-5-МеС Локализация 5-метилцитозина на хромосоме 1. Оценка интенсивности флуоресценции

  34. CpG – островки • неметилированные участки длиной 1 kb • - в 5`-концах 60% промоторов активных генов Что защищает их от метилирования? - они защищены белками - постоянная работа деметилаз - нетипичный состав оснований

  35. Деметилирование – удаление метильных групп из ДНК Пассивное деметилирование – реализуется после репликации ДНК, за счет отсутствия метилазной активности. Новосинтезированная нить ДНК не метилируется по образцу старой, и образуется полуметилированная (гемиметилированная) ДНК. Активное деметилирование – задействована ферментативная система, превращающая 5-метилцитозин в цитозин независимо от репликации Долгое время механизм и ферменты, вовлеченные в процесс активного деметилирования ДНК оставались неизвестными!

  36. Активное деметилирование ДНК 5-гидроксиметилцитозин – гидроксильная форма 5-метилцитозина может быть промежуточным соединением в процессе активного деметилирования (Tahiliani et al., 2009; Ito et al., 2010). 5-гидроксиметилцитозин описан у млекопитающих в начале 1970-х (Penn et al., 1972). 2009 год: 5-гидроксиметилцитозин выявлен в клетках: мозга почки легкого сердца в эмбриональных стволовых клетках мыши в клетках HeLa в клетках эмбриональной почки (Kriaucionis, Heintz, 2009; Tahiliani et al., 2009).

  37. Активное деметилирование ДНК В 2009 году у млекопитающих было идентифицировано семейство белков TET (Ten-Eleven-Translocation), гомологичных белкам трипаносомы JBP1 и JBP2 – оксидазам метильной группы тимина (Tahiliani et al., 2009). Оказалось, что все три белка семейства TET – TET1, TET2 и TET3 – могут превращать 5-метилцитозин в 5-гидроксиметилцитозин (Ito et al., 2010).

  38. Деметилирование ДНК с образованием 5-гидроксиметилцитозина

  39. Методы анализа метилирования 1.Метилчувствительная ПЦР (Not1, Eag1, SacII, HpaII, HhaI) 2. Метилспецифическая ПЦР Трансформация цитозина в урацил бисульфитом Na 3. MethylLight – метилспецифическая ПЦР в реальном времени 4. Биологические микрочипы 5.Специфические антиметилцитозиновые антитела

  40. Волны эпигенетического репрограммирования генома млекопитающих ДНК примордиальных половых клеток значительно метилирована; при миграции клеток в недифференцированные гонады в них наблюдается резкое деметилирование; реметилирование (метилирование de novo) ДНК половых клеток происходит на поздних стадиях созревания. После оплодотворения уровень метилирования остается высоким в импринтированных генах, но резко снижается в неимпринтипрованных отцовских и материнских генах. К стадии бластоцисты уровень метилирования ДНК повышается.

  41. Метилирование ДНК и факторы внешней среды Метаболизм SAM – донора метильной группы При дефиците фолиевой кислоты повышен риск возникновения дефектов нервной трубки у плода Причина: снижение уровня метилирования ДНК

  42. Метилирование ДНК и факторы внешней среды Доказано влияние на метилирование ДНК металлов – никеля, кадмия, мышьяка, а также хрома, ртути, трихлорэтилена, дихлоруксусной и трихлоруксусной кислоты, бензола, бисфенола. Металлы способствуют образованию в клетке активных форм кислорода, вызывающих повреждения ДНК, которые затрудняют или делают невозможной работу ДНК метилтрансфераз. В 1992 году Баркером была выдвинута гипотеза FEBAD (fetal basis of adult disease). В пользу гипотезы свидетельствует обнаруженная взаимосвязь между воздействием на плод экзогенных и эндогенных факторов и риском последующего развития сердечно-сосудистых заболеваний, сахарного диабета второго типа, остеопороза и некоторых видов рака.

  43. Внешние факторы Внешние факторы, действующие на женщину в период беременности, могут изменять характер метилирования ДНК в ее клетках, модифицировать формирующиеся эпигенетические паттерны плода, а также влиять на процесс репрограммирования в формирующихся половых клетках плода!

  44. Метилирование ДНК является обратимой реакцией и в значительной степени подвержено воздействию эндогенных и экзогенных факторов. Эти особенности, с одной стороны, увеличивают риск возникновения ошибок из-за влияния негативных факторов, но с другой – дают возможность проводить коррекцию эпигенетической регуляции генома за счет определенных внешних воздействий, в том числе лекарственных средств, гормонов и диеты.

  45. «В последние годы … установлен особый класс заболеваний человека, обусловленный дефектами структуры и модификаций хроматина - так называемые «хроматиновые болезни». С. Назаренко, 2005 г.

  46. Синдром Ретта (OMIM 312750) Частота 1 на 10000-15000 детей женского пола Впервые описан Реттом в 1966г (Rett, 1966), повторно в 1983 Хогбергом ( Hagberg, 1993). http://www.mississippichallenge.org/rettsyndrome.html Мутация в гене MeCP2 (MeC binding protein), расположенном на Xq28 http://www.rodim.ru/conference/index.php?s=0b8265fee36f1322b6dab8dae8f038a7&showtopic=83503&pid=4926083&st=765&#entry4926083 • регрессия развития • аутизм • стереотипные движения рук http://swimpig.blogspot.com/2007_02_01_archive.html

  47. Синдром ICF (OMIM 242860) (Immunodeficiency, Centromere instability and Facial anomalies syndrome ) Мутации в гене DNMT3B (DNA metiltransferase), расположенном на хромосоме 20q11.2 Luciani et al., 2005 Синдром ICF (иммунодефицит, хромосомная нестабильность, аномалии лицевого черепа) Гетерохроматиновые районы хромосом 1, 9 и 16 неметелированы, вследствие чего растянуты и имеют ветвистую структуру Впервые синдром описан в 1978 году (Hulten, 1978)

  48. Синдром Коффина – Лоури (OMIM 303600) Мутация гена RSK (ribosomal S6 kinase), расположенном на Хp21.1-21.2 RSK2 - регулируемая ростовыми факторами серин-треониновая киназа Частота встречаемости 1:40000 - 50 000 http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=cls&rendertype=figure&id=cls.F1 http://clsf.info/Welcome.htm Впервые был описан 1966 Коффином (Coffin et al., 1966), позже Лоури отметил другие характерные особенности в 1972 году (Lowry et al., 1972).

More Related