1 / 26

Entanglement flow in multipartite systems

T. S. Cubitt. F. Verstraete. J.I. Cirac. Motivation and goals One particle, two particles: previous work Three particles: flow through particles Many particles: flow along networks Application: entanglement generation in chains Conclusions and open questions.

seanna
Download Presentation

Entanglement flow in multipartite systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. T. S. Cubitt F. Verstraete J.I. Cirac • Motivation and goals • One particle, two particles: previous work • Three particles: flow through particles • Many particles: flow along networks • Application: entanglement generation in chains • Conclusions and open questions Entanglement flow in multipartite systems

  2. HSWAP • How do the entanglement dynamics depend on the entanglement in the system? • Doesn’t help us understand entanglement dynamics. • If certain particles are entangled… • If nothing is entangled… …entanglement rate ( ) is non-zero. …entanglement rate ( ) is 0. Entanglement flow: motivation

  3. T. S. Cubitt F. Verstraete J.I. Cirac • Motivation and goals • One particle, two particles: previous work • Three particles: flow through particles • Many particles: flow along networks • Application: entanglement generation in chains • Conclusions and open questions Entanglement flow in multipartite systems

  4. A One particle

  5. A • Entanglement capability of interactions B • Entanglement rate neatly splits into separate entanglement- and interaction-dependent parts: • f only involves entanglement-related quantities, with interaction details absorbed into coefficient h. • Entanglement flow Two qubits W. Dür et. al.,PRL 87, 137901 (2001) H

  6. T. S. Cubitt F. Verstraete J.I. Cirac • Motivation and goals • One particle, two particles: previous work • Three particles: flow through particles • Many particles: flow along networks • Application: entanglement generation in chains • Conclusions and open questions Entanglement flow in multipartite systems

  7. Is there such thing as “flow” of entanglement through ? • Two particles: only dynamics is entanglementcreation.Tripartite systems already hold more possibilities: • Entanglement doesn’t have to flow through at all! • Starting from a completely separable mixed state, and can become highly entangled without itself ever becoming entangled. How does entanglement flow through … B B B A A A Hab Hbc B B C C …to get from to ? C Three particles: flow through

  8. Aside: entangling without entanglementT. S. Cubittet. al.,PRL 91, 037902 (2003)

  9. For pure states A Hab Hbc • General • Qubits! B C Three particles: flow through

  10. T. S. Cubitt F. Verstraete J.I. Cirac • Motivation and goals • One particle, two particles: previous work • Three particles: flow through particles • Many particles: flow along networks • Application: entanglement generation in chains • Conclusions and open questions Entanglement flow in multipartite systems

  11. Interesting dynamics hidden inside subsystems A C B Many particles: flow along

  12. !Rate equations: set of coupled differential equations. HO O- C H3C H OH HO • Rate at which products are produced depends on the amounts of its immediate precursors that are present: H3C H3C C O C OH H3C H3C H3C …which in turn depend on the amounts of their precursors: etc. Remedial chemistry HO- -OH

  13. Can we derive something similar for entanglement? B B’ A • Maybe rate of entanglement generation between two particles… A’ Many particles: flow along depends on the entanglement between particles furtherback along the network. • And the rate for those … would depend on the entanglement between particles still further back along the network.

  14. Uhlmann’s theorem: • Density matrix evolves as: • Use it to re-express FAB(t): • Use Uhlmann again to re-express FAB(t+ t) : Entanglement rate equations (1)

  15. Same relations show that only Hamiltonians “crossing the boundary” of A or B give first-order contributions. • First expression for time derivative: Entanglement rate equations (2) • Unitaries and state maximizing the expressions don’t change to first-order in t :

  16. Prove linear algebra Lemma: Entanglement rate equations (3) • Need to re-express terms of singlet fractions. • Using this, with , we have • andwhere if i is in A, we define A’i=A[i and B’i=B, etc.

  17. Putting all this together, we arrive at: Entanglement rate equations (4) • This is actually a slightly stronger result than stated before, since (from A’i 2 A’ etc.) • Thus we arrive at the stated result (recall that the sum is only over those interactions Hij that cross the boundary of A or B ):

  18. B a b B’ A A’ • Entanglement flow along any network is equivalent to entanglement flow along a chain. • If interaction strengths in chain are set appropriately, we get the same entanglement flow equations. Many particles: flow along

  19. T. S. Cubitt F. Verstraete J.I. Cirac • Motivation and goals • One particle, two particles: previous work • Three particles: flow through particles • Many particles: flow along networks • Application: entanglement generation in chains • Conclusions and open questions Entanglement flow in multipartite systems

  20. As an example application, look at entanglement generation in qubit chains. • How long does it take to entangle end qubits? • In particular, how does this time scale with the length of the chain? … Entanglement generation in chains Fbn/2c -1

  21. What do the curves Fk(t) that saturate the rate equations look like? Time t Generalized singlet fractions Fk(t) Time t Entanglement generation in chains

  22. End qubits in a chain of length n are maximally entangledwhen … Entanglement generation in chains n

  23. Can’t solve rate equations analytically, but can bound their solutions: Time to entangle ends Tent Chain length n Entanglement generation in chains

  24. T. S. Cubitt F. Verstraete J.I. Cirac • Motivation and goals • One particle, two particles: previous work • Three particles: flow through particles • Many particles: flow along networks • Application: entanglement generation in chains • Conclusions and open questions Entanglement flow in multipartite systems

  25. We have established a quantitative concept of entanglement flow: • flow through individual particles • flow along general networks of interacting particles • Easily extended to higher dimensions and multipartiteentanglement. • As an example application, derived a square-root lower bound on entanglementgeneration. Open questions: • How tight are the inequalities in the entanglement rate equations? • Can the square-root bound be saturated? Conclusions and open questions

  26. The end!

More Related