460 likes | 606 Views
Introduction to C & C++. Lecture 10 – Image Processing with OpenCV JJCAO. OpenCV ( Open Source C omputer V ision) is a library of programming functions for real time computer vision . Supported Development Environment. Linux, Windows, Android GCC, Eclipse, Visual Studio, .
E N D
Introduction to C & C++ Lecture 10 – Image Processing with OpenCV JJCAO
OpenCV(Open Source Computer Vision) is a library of programming functions for real time computer vision.
Supported Development Environment • Linux, Windows, Android • GCC, Eclipse, Visual Studio,
Install OpenCV • Basic Info: http://opencv.willowgarage.com/wiki/InstallGuide • Necessary steps for Qt Creator (Similar with VS): http://www.laganiere.name/opencvCookbook/chap1.shtml • Installation in Windows (too much of details): http://opencv.itseez.com/doc/tutorials/introduction/windows_install/windows_install.html#windows-installation
How to build applications with OpenCV inside the Microsoft Visual Studio http://opencv.itseez.com/doc/tutorials/introduction/windows_visual_studio_Opencv/windows_visual_studio_Opencv.html#windows-visual-studio-how-to P11 of OpenCV.2.Computer.Vision.Application.Programming.Cookbook_2011
Load & Display an Image • Load an image (using imread) • Create a named OpenCV window (using namedWindow) • Display an image in an OpenCV window (using imshow)
1. Load an image (using imread) cv::Mat image; image = cv::imread(argv[1], CV_LOAD_IMAGE_COLOR); // Read the file if( img.empty() ) // Check for invalid input { std::cout<< "Could not open or find the image" << std::endl ; return -1; } Image formats supported: Bmp, jpg, png, tif, ppm, … CV_LOAD_IMAGE_UNCHANGED (<0) loads the image as is (including the alpha channel if present) CV_LOAD_IMAGE_GRAYSCALE (0) loads the image as an intensity one CV_LOAD_IMAGE_COLOR (>0) loads the image in the RGB format
2. Create a named OpenCV window (using namedWindow) cv::namedWindow( "Display window", CV_WINDOW_NORMAL|CV_WINDOW_FREERATIO );// Create a window for display. CV_WINDOW_AUTOSIZE is the only supported one if you do not use the Qt backend. In this case the window size will take up the size of the image it shows. No resize permitted! CV_WINDOW_NORMAL on Qt you may use this to allow window resize. The image will resize itself according to the current window size. By using the | operator you also need to specify if you would like the image to keep its aspect ratio (CV_WINDOW_KEEPRATIO) or not (CV_WINDOW_FREERATIO).
3. Display an image in an OpenCV window (using imshow) cv::imshow( "Display window", image ); // Show our image inside it. cv::waitKey(0); // Wait for a keystroke in the window • Because we want our window to be displayed until the user presses a key (otherwise the program would end far too quickly), we use the waitKey function whose only parameter is just how long should it wait for a user input (measured in milliseconds). • Zero means to wait forever.
Necessary Head Files #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> using namespace cv; using namespace std; You’ll almost always end up using the: • core section, as here are defined the basic building blocks of the library • highgui module, as this contains the functions for input, output & GUI operations
Necessary libraries #ifdef_DEBUG #pragma comment(lib, "opencv_core230d.lib“ ) #pragma comment(lib, "opencv_highgui230d.lib“ ) #else #pragma comment(lib, "opencv_core230.lib“ ) #pragma comment(lib, "opencv_highgui230.lib“ ) #endif
From C to C++ • OpenCV has been around ever since 2001. In those days the library was built around a Cinterface. • user is responsible for taking care of memory allocation and de-allocation • Lots of old tutorials written in C • Once your code start to grow larger & larger, more & more a struggle to handle this rather than focusing on solving your goal • Finally C++ • automatic memory management (more or less) • less to write, to achieve more
class CV_EXPORTS Mat { public: // ... a lot of methods ... ... /*! includes several bit-fields: • the magic signature • continuity flag • depth • number of channels*/ intflags; intdims; //! the array dimensionality, >= 2 introws, cols; //! the number of rows and columns or (-1, -1) when the array has more than 2 dimensions int* refcount; //! pointer to the reference counter; when array points to user-allocated data, the pointer is NULL // other members ... uchar* data; //! pointer to the data }; Head
Create a cv::Mat Mat A, C; // creates just the header parts A = imread(argv[1], CV_LOAD_IMAGE_COLOR); // the method will allocate matrix (deep copy) Mat B(A); // Use the copy constructor, without copying the data (shadow copy) C = A; // Assignment operator, shadow copy Mat roi(A, Rect(10,10,100,100));// select a ROI roi= Scalar(0,255,0);//fill the ROI with (0,255,0) (which is green in RGB space); the original A will be modified; see next page.
cv::Scalar template <typename_Tp> class Scalar_ : public Vec<_Tp, 4> { ... }; typedefScalar_<double> Scalar; Being derived from Vec<_Tp, 4> , Scalar_ and Scalar can be used just as typical 4-element vectors.
Deep Copy Mat F = A.clone(); Mat G; A.copyTo(G); Now modifying F or G will not affect the matrix pointed by the Mat header.
What you need to remember • Output image allocation for OpenCV functions is automatic (unless specified otherwise). • Example (next page) • No need to think about memory freeing with OpenCVs C++ interface. • The assignment operator and the copy constructor (ctor)copies only the header. • Use the clone() or the copyTo() function to copy the underlying matrix of an image.
Output image allocation for OpenCV functions is automatic • instead of writing: Mat color; ... Mat gray(color.rows, color.cols, color.depth()); cvtColor(color, gray, CV_BGR2GRAY); • you can simply write: Mat color; ... Mat gray; cvtColor(color, gray, CV_BGR2GRAY);
How to scan images, lookup table & time measurement • How to go through each and every pixel of an image? • How is OpenCV matrix values stored? • How to measure the performance of our algorithm? • What are lookup tables and why use them? • Basic Mat info • Storingmethods • Data type conversion • Accessing Pixel Values
a simple color reduction method how_to_scan_images imageName.jpg divideWith [G] if( argc == 4 && !strcmp(argv[3],"G") ) I = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE); else I = imread(argv[1], CV_LOAD_IMAGE_COLOR); uchar CV_8U CV_8U3
Storingmethods • How to store pixel values? • Color space • Gray-level (Black-and-White) • unsigned 8-bit values • 0: black, 255: white • RGB • A triplet of unsigned 8-bit values • [0, 0, 0]: black, [255, 0, 0]: red, [255, 255, 255]: white • HSV, HLS, …, CIE • Data type
bool Mat::isContinuous() • Matrices created with Mat::create() are always continuous: • may no longer continuous • extract a part of the matrix using Mat::col(), Mat::diag() , and so on, • or constructed a matrix header for externally allocated data. row1 row2 row n …
Storingmethods • How to store pixel values? • Color space • Gray-level (Black-and-White) • unsigned 8-bit values • 0: black, 255: white • RGB • A triplet of unsigned 8-bit values • [0, 0, 0]: black, [255, 0, 0]: red, [255, 255, 255]: white • HSV, HLS, …, CIE • Data type CV_8U - 8-bit unsigned integers ( 0..255 ) CV_8S - 8-bit signed integers ( -128..127 ) CV_16U - 16-bit unsigned integers ( 0..65535 ) CV_16S - 16-bit signed integers ( -32768..32767 ) CV_32S - 32-bit signed integers ( -2147483648..2147483647 ) CV_32F - 32-bit floating-point numbers ( -FLT_MAX..FLT_MAX, INF, NAN ) CV_64F - 64-bit floating-point numbers ( -DBL_MAX..DBL_MAX, INF, NAN )
Inquire Mat Info • intMat::depth() const • intMat::channels() const • intMat::type() // mixture of depth & channels • #define CV_8UC1 CV_MAKETYPE(CV_8U,1) • #define CV_8UC2 CV_MAKETYPE(CV_8U,2) • #define CV_8UC3 CV_MAKETYPE(CV_8U,3) • #define CV_8UC4 CV_MAKETYPE(CV_8U,4) • #define CV_8UC(n) CV_MAKETYPE(CV_8U,(n)) • … • size_tMat::elemSize() // matrix element (pixel) size in bytes • if the matrix type is CV_16SC3 , the method returns3*sizeof(short) or 6. • size_t Mat::elemSize1() //element size of a channel in bytes • if the matrix type is CV_16SC3 , the method returns sizeof(short) or 2. • M.step[] • size_tMat::step1() // a matrix step divided by Mat::elemSize1()
Accessing Pixel Values • The efficient way: c style access p = I.ptr<uchar>(i); p[j] • The iterator (safe) method • On-the-fly address calculation with reference returning I.at<uchar>(i,j) • Performance Difference quite large (2560 X 1600) image
Performance Difference Debug Release
More efficient Algorithm • divide and multiplicationoperations are bloody expensive for a system. • cheaper operations such as a few subtractions, addition or in best case a simple assignment • limited number of input values, 256 to be exact in this problem
Lookup table intdivideWith; // convert our input string to number - C++ style stringstream s; s << argv[2]; s >> divideWith; if (!s){ cout << "Invalid number entered for dividing. " << endl; return -1; } uchar table[256]; for (int i = 0; i < 256; ++i) table[i] = divideWith* (i/divideWith);
Mat& ScanImageAndReduceC(Mat& I, constuchar* const table) inti,j; uchar* p; for( i = 0; i < nRows; ++i) { p = I.ptr<uchar>(i); for ( j = 0; j < nCols; ++j) { p[j] = table[p[j]]; } } return I; } { // accept only char type matrices CV_Assert(I.depth() != sizeof(uchar)); int channels = I.channels(); intnRows = I.rows; intnCols = I.cols * channels; if (I.isContinuous()) { nCols *= nRows; nRows = 1; }
Basic Mat Info • bool Mat::empty() • size_t Mat::total() • int Mat::rows, Mat::cols • Size Mat::size()
Mat& ScanImageAndReduceIterator(Mat& I, constuchar* const table) { // accept only char type matrices CV_Assert(I.depth() != sizeof(uchar)); constint channels = I.channels(); switch(channels) { case 1: { MatIterator_<uchar> it, end; for( it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it) *it = table[*it]; break; } case 3: { MatIterator_<Vec3b> it, end; for( it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it){ (*it)[0] = table[(*it)[0]]; (*it)[1] = table[(*it)[1]]; (*it)[2] = table[(*it)[2]]; } } } return I; }
Mat& ScanImageAndReduceRandomAccess(Mat& I, constuchar* const table) case 3: { Mat_<Vec3b> _I = I; for( int i = 0; i < I.rows; ++i) for( int j = 0; j < I.cols; ++j ){ _I(i,j)[0] = table[_I(i,j)[0]]; _I(i,j)[1] = table[_I(i,j)[1]]; _I(i,j)[2] = table[_I(i,j)[2]]; } I = _I; break; } } return I; } { // accept only char type matrices CV_Assert(I.depth() != sizeof(uchar)); constint channels = I.channels(); switch(channels) { case 1: { for( int i = 0; i < I.rows; ++i) for( int j = 0; j < I.cols; ++j ){ I.at<uchar>(i,j) = table[I.at<uchar>(i,j)]; } break; }
The Core Function: cv::LUT() LUT: replace all of given image values to some other values Mat lookUpTable(1, 256, CV_8U); uchar* p = lookUpTable.data; for( int i = 0; i < 256; ++i) p[i] = table[i]; for (int i = 0; i < times; ++i) cv::LUT(I, lookUpTable, J);
Conclusion • If possible, use the already made functions of OpenCV (instead reinventing these). • The fastest method turns out to be the LUT function. This is because the OpenCV library is multi-thread enabled via Intel Threaded Building Blocks. • However, if you need to write a simple image scan prefer the pointer method. The iterator is a safer bet, however quite slower. • Using the on-the-fly reference access method for full image scan is the most costly in debug mode. In the release mode it may beat the iterator approach or not, however it surely sacrifices for this the safety trait of iterators.
Type Conversion #include <opencv2/imgproc/imgproc.hpp> cvtColor(I, J, CV_RGB2GRAY); for( int i = 0; i < 0.5*I.rows; ++i) for( int j = 0; j < 0.5*I.cols; ++j ) { //J.at<uchar>(i,j) = 0; J.at<float>(i,j) = 0; } Mat::convertTo()
void Mat::convertTo(OutputArraym, intrtype, double alpha=1, double beta=0 ) • Converts an array to another datatype with optional scaling. • Parameters: • m – Destination matrix. If it does not have a proper size or type before the operation, it is reallocated. • rtype – Desired destination matrix type or, rather, the depth since the number of channels are the same as the source has. If rtype is negative, the destination matrix will have the same type as the source. • alpha – Optional scale factor. • beta – Optional delta added to the scaled values. • The method converts source pixel values to the target datatype. saturate_cast<> is applied at the end to avoid possible overflows:
One More Example: gradient infile='data\HappyFish.jpg'; im = imread(infile); info = imfinfo(infile); if ~strcmp(info.ColorType,'grayscale') im = double(rgb2gray(im)) ; end [gx,gy] = gradient(im); figure;colormap(gray); imagesc(im);hold on; [x,y] = meshgrid(1:n,1:m); quiver(x, y, gx,gy);
See the cvMatlab and cvMatlabTestexample void jj::gradient(cv::InputArray _src, cv::OutputArray _dst, intxorder) { cv::Mat src=_src.getMat(); _dst.create( src.size(), CV_MAKETYPE(src.depth(), src.channels()) ); cv::Mat dst = _dst.getMat(); … }
See the cvMatlab and cvMatlabTestexample • Difference in x direction • // single channel • Mat src, dest; // same size, diff depth • for( int i = 0; i < src.rows; ++i) for( int j = 1; j < src.cols-1; ++j ) { dest.at<uchar>(i,j) = (src.at<uchar>(i,j+1) - src.at<uchar>(i,j-1) ) /2.0; } // 3 channels • dst.at<cv::Vec3b>(i,j)[0] = (src.at<cv::Vec3b>(i,j+1)[0] - src.at<cv::Vec3b>(i,j-1)[0] ) /2.0; dst.col(j)=(src.col(j+1)-src.col(j-1))/2.0;
Create a Mat object 1 • Mat() Mat M(2,2, CV_8UC3, Scalar(0,0,255)); cout <<"M = "<< endl <<" "<< M << endl << endl; • Create a matrix with more than two dimensions intsz[3] = {2,2,2}; Mat L(3,sz, CV_8UC(1), Scalar::all(0)); // Specify its dimension, then pass a pointer containing the size for each dimension and the rest remains the same. • Create a header for an already existing IplImagepointer IplImage* img = cvLoadImage("greatwave.png", 1); Mat mtx(img); // convert IplImage* -> Mat
Create a Mat object 2 • Create() function M.create(4,4, CV_8UC(2)); cout << "M = "<< endl << " " << M << endl << endl; // You cannot initialize the matrix values with this construction. It will only reallocate its matrix data memory if the new size will not fit into the old one. • MATLAB style initializer: zeros(), ones(), :eyes() Mat E = Mat::eye(4, 4, CV_64F); Mat O = Mat::ones(2, 2, CV_32F); Mat Z = Mat::zeros(3,3, CV_8UC1);
Create a Mat object 3 • For small matrices Mat C = (Mat_<double>(3,3) << 0, -1, 0, -1, 5, -1, 0, -1, 0); • Create a new header for an existing Mat object and clone() or copyTo() it Mat RowClone = C.row(1).clone();
Create a Mat object 4 • Create a random matrix with randu() Mat R = Mat(3, 2, CV_8UC3); randu(R, Scalar::all(0), Scalar::all(255)); cout << "R (default) = " << endl << R << endl << endl; cout<< "R (python) = " << endl << format(R,"python") << endl << endl; cout<< "R (csv) = " << endl << format(R,"csv" ) << endl << endl; …
Resources • http://opencv.willowgarage.com/wiki/ • C++ Cheatsheet.pdf • Online reference manual: 2.3 documentation is here 2008 2011
References • OpenCV 2 Computer Vision Application Programming Cookbook, 2011.