1 / 43

Introduction to Antibacterial Therapy: Clinically Relevant Microbiology and Antibiotic Use

Introduction to Antibacterial Therapy: Clinically Relevant Microbiology and Antibiotic Use. Edward L. Goodman, MD Hospital Epidemiologist Core Faculty July 11, 2013. Outline . Basic Clinical Bacteriology Antibiotics Categories Pharmacology Mechanisms of Resistance

selma-russo
Download Presentation

Introduction to Antibacterial Therapy: Clinically Relevant Microbiology and Antibiotic Use

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction to Antibacterial Therapy: Clinically Relevant Microbiology and Antibiotic Use Edward L. Goodman, MD Hospital Epidemiologist Core Faculty July 11, 2013

  2. Outline • Basic Clinical Bacteriology • Antibiotics • Categories • Pharmacology • Mechanisms of Resistance • Antibiotic Stewardship • “Pearls”

  3. Scheme for the Four Major Classes of Bacterial Pathogens in Hospitalized Patients • Gram Positive Cocci • Gram Negative Rods • Fastidious Gram Negative Organisms • Anaerobes

  4. Gram stain: clusters Catalase pos = Staph Coag pos = S aureus Coag neg = variety of species Chains and pairs Catalase neg = streptococci Classify by hemolysis Type by specific CHO Gram Positive Cocci

  5. Staphylococcus aureus • >95% produce penicillinase (beta lactamase) = penicillin resistant • At PHD ~53% of SA are hetero (methicillin) resistant = MRSA (less than national average) • Glycopeptide (vancomycin) intermediate (GISA) • MIC 8-16 • Eight nationwide • First VRSA reported July 5, 2002 MMWR • Seven isolates reported (5/7 from Michigan) • MICs 32 - >128 • No evidence of spread w/in families or hospital

  6. Coagulase Negative Staph • Many species – S. epidermidis most common • Mostly methicillin resistant (65-85%) • Often contaminants or colonizers – use specific criteria to distinguish • Major cause of overuse of vancomycin • S. lugdunensis is rarely a contaminant • Causes destructive endocarditis

  7. Streptococci • Beta hemolysis: Group A,B,C etc. • Invasive – mimic staph in virulence • S. pyogenes (Group A) • Pharyngitis, • Soft tissue • Invasive • TSS • Non suppurative sequellae: ARF, AGN

  8. Other Beta hemolytic • S. agalactiae (Group B) • Peripartum/Neonatal • Diabetic foot • Bacteremia/endocarditis/metastatic foci • Group C/G Streptococcus • large colony variants: similar clinical illness as GAS plus bacteremia, endocarditis, septic arthritis • Small colony variants = Strept milleri

  9. Viridans group Anginosus sp. Bovis sp.: Group D Mutans sp. Salivarius sp. Mitis sp.

  10. Enterococci • Formerly considered Group D Streptococci now a separate genus • Bacteremia without IE does not need cidal/syngergistic therapy • Endocarditis does need cidal/syngergistic • Bacteriuria in elderly, obstructed • Part of mixed abdominal/pelvic infections • Role in mixed flora intra-abdominal infection trivial- therapy for 2° peritonitis need not cover it • Intrinsically resistant to cephalosporins • No bactericidal single agent • For endocarditis need pen/amp/vanc plus AG • Daptomycin is cidal in vitro • Little experience in endocarditis • Resistance develops (NEJM Aug 25, 2011)

  11. Fermentors Oxidase negative Facultative anaerobes Enteric flora Numerous genera Escherischia Enterobacter Serratia, etc UTI, IAI, LRTI, 2°B Non-fermentors Pure aerobes Pseudomonas (oxidase +) and Acinetobacter (oxidase -) Nosocomial LRTI, bacteremia, UTI Opportunistic Inherently resistant New mechanisms of MDR emerging Gram Negative Rods

  12. Fastidious Gram Negatives • Neisseria, Hemophilus, Moraxella, HACEK • Growth requirements • CO² and enrichment • Culture for Neisseria must be plated at bedside • Chocolate agar with CO2 • Ligase chain reaction (like PCR) has reduced number of GU cultures for N. gonorrhea • Can’t do MIC without culture (at reference lab only) • FQ resistance 13% in 2011 • FQ not recommended for empiric Rx since 2007

  13. Anaerobes • Gram negative rods • Bacteroides (gut/gu flora) • Fusobacteria (oral and gut) • Prevotella (mostly oral) • Gram positive rods • Clostridia (gut) • Proprionobacteria (skin) • Gram positive cocci • Peptostreptococci and peptococci (oral, gut, gu)

  14. Anaerobic Gram Negative Rods • Fastidious • Produce beta lactamase • Endogenous flora • When to consider • Part of mixed infections • Confer foul odor • Heterogeneous morphology • Gram stain shows GNR but routine cults negative

  15. (My) Antibiotic Classification • Narrow Spectrum • Active against only one of the four classes of bacteria • Broad Spectrum • Active against more than one of the classes

  16. Narrow Spectrum • Active mostly against only one of the classes of bacteria • gram positive: glycopeptides, linezolid, daptomycin, telavancin • aerobic gram negative: aminoglycosides, aztreonam • anaerobes: metronidazole

  17. Narrow Spectrum

  18. BROAD SPECTRUMPenicillins/Carbapenems

  19. Cephalosporins

  20. Pharmacodynamics • MIC=lowest concentration to inhibit growth • MBC=the lowest concentration to kill • Peak=highest serum level after a dose • AUC=area under the concentration time curve • PAE=persistent suppression of growth following exposure to antimicrobial

  21. Pharmocodynamics: Dosing for Efficacy Peak Blood Level MIC Trough Time

  22. Parameters of antibacterial efficacy • Time above MIC (non concentration killing) - beta lactams, macrolides, clindamycin, glycopeptides • 24 hour AUC/MIC - aminoglycosides, fluoroquinolones, azalides, tetracyclines, glycopeptides, quinupristin/dalfopristin • Peak/MIC (concentration dependent killing) - aminoglycosides, fluoroquinolones, daptomycin,

  23. Time over MIC • For beta lactams, should exceed MIC > 50% of dose interval • Higher doses may allow adequate time over MIC • For most beta lactams, optimal time over MIC can be achieved by continuous infusion (except temperature labile drugs such as imipenem, ampicillin) • For Vancomycin, evolving consensus that troughs should be >15 for most serious MRSA infections, especially pneumonia and bacteremia • If MRSA MIC >= 2 and patient responding slowly or poorly, should change vancomycin to daptomycin, linezolid or tigecycline • Few THD MRSA have MIC >1

  24. Higher Serum/tissue levels are associated with faster killing • Aminoglycosides • Peak/MIC ratio of >10-12 optimal • Achieved by “Once Daily Dosing” • PAE helps • Fluoroquinolones • 10-12 ratio achieved for enteric GNR • PAE helps • not achieved forPseudomonas • Not always achieved for Streptococcus pneumoniae • Daptomycin • Dose on actual body weight

  25. FQ AUC/MIC = AUIC • For Streptococcus pneumoniae, FQ should have AUIC >= 30 • For gram negative rods where Peak/MIC ratio of 10-12 not possible, then FQ AUIC should >= 125 • For MRSA, vancomycin AUIC needs to be >=400. Not easily achieved when MIC >=2.

  26. A Brief Overview of Antimicrobial Resistance

  27. ESKAPE Organisms (mechanism) Enterococcus faecium VRE (Van A) Staphylococcus aureus MRSA (MEC A) Klebsiella pneumoniae (ESBL – KPC) Acinetobacter baumanii (KPC – NDM1) Pseudomonas aeruginosa(AmpC, KPC, NDM-1) Enterobacter species (AmpC)

  28. Mechanisms of Antimicrobial Resistance in BacteriaFC Tenover Amer J Med 2006;119: S3-10

  29. DNA gyrase DNA-directed RNA polymerase Quinolones Cell wall synthesis Rifampin ß-lactams & Glycopeptides (Vancomycin) DNA THFA mRNA Trimethoprim Protein synthesis inhibition Ribosomes Folic acid synthesis DHFA 50 50 50 Macrolides & Lincomycins 30 30 30 Sulfonamides PABA Protein synthesis inhibition Protein synthesis mistranslation Tetracyclines Aminoglycosides Cohen. Science 1992; 257:1064

  30. Mechanisms of Antibiotic ResistancePM Hawkey, The origins and molecular basis of antibiotic resistance. Brit Med J 1998;317: 657-660

  31. Interplay of β lactam antibiotics and bacteriaPM Hawkey, The origins and molecular basis of antibiotic resistance. Brit Med J 1998;317: 657-660

  32. Bad Beta Lactamases (for dummies like me) • ESBL • Klebsiella and E coli • Require carbapenems although for UTI Pip/tazo might work • Not clear how transmissible but use Contact Isolation • AMP C • SPICE organisms • Inducible/derepressed chromosomal beta lactamases • Requires carbapenems when AMP C expressed • Do not require Contact Isolation unless associated plasmid transmits MDR

  33. Really Bad Beta Lactamases • Carbapenem Resistant Enterobacteraciae (CRE) • Resistant to everything but colistin and sometimes tigecycline • New Delhi Metalloproteinases (NDM) • Pseudomonas and enterobacteraciae • Resistant to all but colistin • These patients require Contact Isolation and Cohorting

  34. Antibiotic Use and Resistance • Strong epidemiological evidence that antibiotic use in humans and animals associated with increasing resistance • Subtherapeutic dosing encourages resistant mutants to emerge; conversely, rapid bactericidal activity discourages • Hospital antibiotic control programs have been demonstrated to reduce resistance

  35. Antibiotic Armageddon “There is only a thin red line of ID practitioners who have dedicated themselves to rational therapy and control of hospital infections” Kunin CID 1997;25:240

  36. When to Cover for MRSA Severe purulent SSTI Necrotizing pneumonia/empyema Central line associated (Known MRSA carriers?) Go To Drug = Vancomycin

  37. Is Vancomycin Needed for every patient with SSTI? CID 2011:1-38

  38. When to Cover for Pseudomonas • Severe COBPD/bronchiectasis • Frequent ABX • Steroid dependent • Known airway colonization • Neutropenic septic leukemic • (Burn patients)

  39. Is Pseudomonas Coverage Needed for Every Diabetic Foot Infection?CID 2012; 54 (12):132-173

  40. Historic overview on treatment of infections • 2000 BC: Eat this root • 1000 AD: Say this prayer • 1800’s: Take this potion • 1940’s: Take penicillin, it is a miracle drug • 1980’s – 2000’s: Take this new antibiotic, it is a bigger miracle! • ?2014: Eat this root!

  41. Thanks to • Shahbaz Hasan, MD for allowing me to use slides from his 6/6/07 Clinical Grand Rounds on Streptococci • Eliane S Haron, MD for allowing me to use the “Eat this root” slide • Terri Smith, PharmD for collecting data from the Antibiotic Stewardship Program

More Related