1 / 34

Segmentation Based Multi- V iew Stereo

Segmentation Based Multi- V iew Stereo. Michal Jan čošek, Tomáš Pajdla. Problem formulation : input. Input. Output. Problem formulation : output. Input. Output. Previous work. [Furukawa07] Y. Furukawa and J. Ponce. Accurate, Dense, and Robust Multi-View Stereopsis , CVPR 2007

semah
Download Presentation

Segmentation Based Multi- V iew Stereo

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Segmentation Based Multi-View Stereo Michal Jančošek, Tomáš Pajdla jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  2. Problem formulation : input Input Output jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  3. Problem formulation : output Input Output jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  4. Previous work • [Furukawa07] Y. Furukawa and J. Ponce. Accurate, Dense, and Robust Multi-View Stereopsis, CVPR 2007 • prematching, growing, filtering • [Tao00] H. Tao and H.S. Sawhney. Global Matching Criterion and Color Segmentation Based Stereo, ACV 2000 • using segmentation for hypothesizing the continuous parts of a scene • [Felzenszwalb04] Pedro F. Felzenszwalb and Daniel P. Huttenlocher.Efficientgraph-basedimagesegmentation,IJCV2004. • color segmantation • [Jancosek08] Jancosek M. and Pajdla T. Effective seed generation for 3D reconstruction, CVWW 2008 • optimal 3D segment orientation jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  5. Pipeline overview : Prematching Input Prematching (3D seeds) Hypothesizing (3D segments) = Output Final mesh construction Filtering (3D patches) jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  6. Pipeline overview : 3D segments Input Prematching (3D seeds) Hypothesizing (3D segments) = Output Final mesh construction Filtering (3D patches) jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  7. Pipeline overview : Filtering Input Prematching (3D seeds) Hypothesizing (3D segments) = Output Final mesh construction Filtering (3D patches) jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  8. Pipeline overview : Final mesh construction Poisson Surface Reconstruction Input Prematching (3D seeds) Hypothesizing (3D segments) = Output Final mesh construction Filtering (3D patches) jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  9. Pipeline overview : Prematching Input Prematching (3D seeds) Hypothesizing (3D segments) = Output Final mesh construction Filtering (3D patches) jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  10. Prematching • Cameras are known (or computed [Martinec et al.]) • Feature points detection (harris on a grid [Furukawa07]) • Feature points are matched in each image pair (guided matching by epigeoms). • Matching is based on the NCC score of two 5x5 windows • Mutually best matches are selected • Tracks are constructed by grouping mutually best matches S r = ²i( ) = center of gravity of the points in S jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  11. Pipeline overview : 3D segments Input Prematching (3D seeds) Hypothesizing (3D segments) = Output Final mesh construction Filtering (3D patches) jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  12. 3D segments • For each segment with some seed projections, we create an optimal 3D segment and set it as explored • Next we do a greedy searching of unexplored segments to explore more jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  13. Optimal 3D segment creation TP FP TP We accept only 3D segments with the confidence above some threshold (0.6) TP – true positive FP – false positive - explored segment - unexplored segment We take only the best 3D segment according to confidence jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  14. Optimal 3D segment creation • The goal is to find the global maximum of the criteria function Ф= 45 Ф= 75 k = 0 Ѳ= 90 Ѳ= 120 MNCC( , )= jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  15. Optimal 3D segment creation • First, we estimate 3D segment orientation • 3D segment orientation is estimated by gradient descent optimization from the best sample out of 10x10 regular orientation samples [Jancosek08] • Next, we find the optimum position of 3D segment on the ray from reference camera center for the estimated orientation jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  16. Greedy searching of unexplored segments TP FP TP TP TP TP – true positive FP – false positive - explored segment - unexplored segment jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  17. Greedy searching of unexplored segments TP TP TP TP FP TP TP – true positive FP – false positive - explored segment - unexplored segment jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  18. Pipeline overview : Filtering Input Prematching (3D seeds) Hypothesizing (3D segments) = Output Final mesh construction Filtering (3D patches) jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  19. Filtering TP FP TP The FP 3D segments are rejected when they are not supported by another 3D segments TP – true positive FP – false positive - explored segment - unexplored segment jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  20. Pipeline overview : Final mesh construction Poisson Surface Reconstruction Input Prematching (3D seeds) Hypothesizing (3D segments) = Output Final mesh construction Filtering (3D patches) jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  21. Results : Strecha’s evaluation jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  22. Results : Strecha’s evaluation jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  23. Results : Strecha’s evaluation jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  24. Results : Strecha’s evaluation jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  25. Results : Strecha’s evaluation jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  26. Results : Strecha’s evaluation jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  27. Results : Homogenous regions jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  28. Results : Homogenous regions jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  29. Results : Homogenous regions jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  30. Results : Homogenous regions jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  31. Results : Homogenous regions jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  32. Results : Homogenous regions jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  33. Conclusions • Advantages • Complete models • Lack of texture is explained by planes • Speed • Possible to implement on GPU • Disadvantages • Low accuracy • Future work • MRF on volume around 3D segments jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

  34. THANK YOU FOR YOUR ATTENTION jancom1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

More Related