400 likes | 592 Views
Lake Mixing: Density. Thermal Stratification. Epilimnion. Hypolimnion. Seasonal Stratification. Thin ice?. Field Trip Results. Chemistry-Physics-Biology Linkage. Significance of Stratification. Unstratified, Single CSTR (CMFR). Stratified 2 CSTRs with feedback. Upwelling. C. C. C.
E N D
Thermal Stratification Epilimnion Hypolimnion
Significance of Stratification Unstratified, Single CSTR (CMFR) Stratified 2 CSTRs with feedback
C C C P P C C C C C P P C C C C C C C P P P P O O O O O O O O O O O O O O O O O O O O O C O C C O O Nutrient Limitation The growth of algae and higher aquatic plants in lakes is regulated by conditions of light and temperature and the availability of those inorganic nutrients required to support growth. The element most often in limiting supply is phosphorus, P. +
Effects of Eutrophication • Eutrophic • High biomass • Low diversity • Simple food chain • Anoxic bottom waters • Cold-water fish absent • Low aesthetic quality • Taste and odor problems • Rough fish abundant • Toxic algae present • Oligotrophic • Low biomass • High diversity • Complex food web • Oxic waters • Cold-water fish present • High aesthetic quality • No taste or odor problems
Oxygen supply Surface mass transport Vertical mass transport Hypolimnetic oxygen demand
Biogeochemistry: study of the interactions of biology, geology, chemistry, physics
Another view of the carbon cycle Photosynthesis CO2 Organic C Respiration Methane oxidation Methanogenesis CH4
Mississippi R. L.Superior
N2O Emissions: 310 x greenhouse effect of CO2 U.S. Emissions increased 1.1% in 1990s 30% of anthropogenic emissions occur in “coastal” areas No reliable estimates of emissions from Great Lakes
Gulf of Mexico Hypoxic Zone July 23-28, 1999, Shelfwide Oxygen Survey 30.0 L. Calcasieu Atchafalaya R. Sabine L. Mississippi R. 29.5 Terrebonne Bay Latitude (deg.) 29.0 50 km 28.5 90.5 89.5 93.5 92.5 91.5 Longitude (deg.) Bottom Dissolved Oxygen Less than 2.0 mg/L (Rabalais, Turner & Wiseman)
Eutrophication Eutrophication: the process of becoming or being made eutrophic Eutrophic: the state of being enriched in nutrients or food sources In aquatic ecosystems, eutrophication is caused by excessive inputs of nutrients, both N & P. Generally, freshwaters are P-limited and coastal estuarine waters are N-limited. The nutrients enhance algal growth, and this, in turn, may have a cascade of effects on the ecosystem. These effects may include: algal blooms, growth of undesirable algal species, oxygen depletion or anoxia in bottom waters, loss of cold-water fish species, abundance of “rough fish”, fish kills, unpleasant tastes and odors.
Sources of nutrients • Point sources • Sewage treatment plant discharges • Storm sewer discharges • Industrial discharges • Non-point sources • Atmospheric deposition • Agricultural runoff (fertilizer, soil erosion) • Septic systems
Solution: Reduce nutrient inputs • Agriculture • Reduce animal density, restrict timing of manure spreading, buffer strips by streams, reduced tillage, underground fertilizer application, wetland preservation and construction • Watershed management • Buffer zones, wetland filters • Storm runoff • Eliminate combined sewer systems (CSO’s) • Stormwater treatment required (holding ponds, alum) • Education on yard fertilization • Erosion from construction, forestry • Erosion barriers, soil cover, road and bridge stabilization • Septic systems • Distance from lake, adequate drainfields
Mitigation strategies Often there is pressure for quick actions that will reduce the severity of the symptoms. Numerous options exist. To understand these options and choose among them, one should understand the nutrient cycle within the aquatic system (lake).
P Cycle The P cycle may be manipulated in several ways to reduce the regeneration of inorganic P and its transport to the epilimnion or to reduce the algal uptake of P.
Within-lake actions • Reduce algal growth • Apply algicide • Biomanipulation • Reduce mineralization • Remove organic P before it is mineralized • Dredging • Macrophyte harvesting • Reduce transport of inorg. P to epilimnion • Hypolimnetic water withdrawal
Vollenweider Model Steady State Solution:
Terms to know: Epilimnion Hypolimnion Thermocline Metalimnion Oligotrophic Eutrophic Mesotrophic Oxygen sag curve Critical point Oxygen deficit Saturation Reaeration Deoxygenation Denitrification Nitrification Acid rain Mineralization Limiting nutrient Liebig’s Law Sulfate reduction Nitrogen fixation Hydrologic cycle Evapotranspiration Biogeochemical cycle Micronutrient Macronutrient
Review of previous terms: Biotic Abiotic Atmosphere Hydrosphere Lithosphere Biosphere Ecosphere Ecology Species Population Community Organism groups: viruses bacteria algae fungi protozoa rotifers microcrustaceans macrophytes macroinvertebrates fish Photosynthesis Chlorophyll Respiration Redox Reduction Oxidation Electron donor Electron acceptor Aerobes Obligate vs. facultative Anaerobic respiration Aerobic respiration anoxic Anaerobic Fermentation Autotroph Heterotroph Biomass Productivity Primary production Secondary production Lithotrophs Photoautotrophs Photoheterotrophs Chemoheterotrophs Chemoautotrophs Producers Consumers Herbivores Carnivores Omnivores Trophic level Food chain Food web Microbial loop Decomposers