1 / 28

Dust Formation in the Early ( z >6) Universe

Dust Formation in the Early ( z >6) Universe. S. V. Marchenko Western Kentucky University. General importance. ~50% of the optical radiation emitted since the Big Bang by all sources in the universe has been ‘reprocessed’ by dust

seoras
Download Presentation

Dust Formation in the Early ( z >6) Universe

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dust Formation in the Early (z>6) Universe S. V. Marchenko Western Kentucky University

  2. General importance • ~50% of the optical radiation emitted since the Big Bang by all • sources in the universe has been ‘reprocessed’ by dust • cooling (e.g. [CII] 157.7 m)  accretion  star formation rates • (massive, M> 30 M stars)  IMF • assembly of H2 on dust grains is far more efficient than in the • gas phase • dust in Lyman break galaxies at z~5 ? (Ando et al. 2004; Ouchi • et al. 2004) • CMB distortions; far-IR (=0.4-1.0 mm: Elfgren & Desert 2004) • background Can we see a z~10 object?

  3. SFR and dust Star formation rates and dust attenuation: GALEX/UV (Schiminovich et al. 2005)

  4. Dust z~0: gen. Info Stars  Dust (MW Galaxy: Gehrz 1989) AGB (C, OH/IR, Miras) RSG ~ 10-3 M/yreach SNe PNe ~ 10-4 M/yreach Wolf-Rayet Presently, WRs produce <1% of the dust galaxy-wide. Molecular clouds: 1-5times the stellar rate

  5. Dust z>>0 - 1 Stars  Dust (z>>0) M(ini) Dust M mass/* (M ) composition size __________________________________________________________________ SNe(PopIII) 140-260 ? ? ? SNe II  8 0.1-0.3, Z<<Z ? ? 3 , Z~Z Si, C, Fe(?) ‘standard’?, ~1m LBVs  75-85 ? Z<<Z ? ?  30(?)0.01-0.25, Z~Z Si, PAH, Al(??), ~1m + C ‘small’ WCd  60-70 ? Z<<Z ? ?  3010-3 -10-2 , Z~Z C(amorph.) ~1m+ ‘small’

  6. Dust z>>0 - 2 Stars  Dust (z>>0) M(ini) Dust M mass/* (M) composition size __________________________________________________________________ sgB[e] ? ? Z<<Z ? ?  30-60 ? Z~Z Si ~1m B[e]WD  5(?) ? ? ? RSG  8-50 ? Z<<Z ? ?  8-2510-4 -10-3, Z~Z Si ~0.5m+ ‘standard’ AGB  1-(5-6) Mini(Z/Z), Z<<Z ? ? (OH/IR)  1-6 ~10-3 Mini, Z~Z Si, C, ice ‘stand.’(?)

  7. SN - facts Dust in core-collapse SNe Evidence: - isotopic abundance ratios of grains in meteorites (excess of 13C, 15N, 18O, etc. - Travaglio et al. 1999) - near-mid-IR (~1-2 yrs after explosion), sub-mm excesses - blueshifted emission lines HOW MUCH DUST ?? Theory: up to ~1M/expl.(Todini & Ferrara 2001) Observations: ~10-3-10-2 M (mid-IR: Dwek 1993; Pozzo et al. 2004) ~1-2M [sub-mm: Dunne 2003, Morgan 2003] Primordial (WR, LBV, RSG) dust? – SN2002hh [Barlow et al.2005], SN 2002ic (Kotak et al., 2005)

  8. SN – 1987A Preexisting dust? Light echoes in SN1987A: HST/WFPC2, F656N (Sugerman et al. 2005)

  9. LBVs LBVs: preexisting dust (RSG/BSG)? AG Car: 12.5 μm (Voors et al. 2000) η Car: Smith et al. 2002 η Car: L band, Chesneau et al. 2005

  10. RSG RSGs: in situ dust VY CMa (M5e Ia): Smith et al., 2001

  11. WR104, pinwheel WR104: WC9d+B0.5V(+VB), P = 220 d April-June1998, Keck, H-K interferometry: Tuthill et al. (1999) _______________________ 150 mas

  12. WR48a, Gem WR48a: WC8ed+? March 2004, Gemini-South/TReCS, 12.3 m

  13. WR112, animation WR 112 (WC9d+OB?) Gemini, 12.5 m: 2001 vs. 2004 P ~ 12 y, D ~

  14. WR112, july 2004 July 2004, Gemini-South/TReCS; 12.3 m

  15. WR112, model

  16. WR112, dust survival … at least 20% of the initially formed dust survives the first ~100 years of expansion in a shocked environment… (Marchenko et al. 2002)

  17. Z-depend. For WRs Meynet & Maeder (2005) Does dust production depends on Z? Binaries? – some [limited] help?

  18. Model-1 • MODEL: modified from Loeb & Haiman (1997) • dust absorption coefficient • dust opacity • - for SMC (Cartledge et al. 2005) • - for MWG (Mathis 1990) • dust density • i - different categories of dust-producers: SN, massive stars, AGB • mass fraction of the deposited dust • or 10  z  20 • z  10

  19. Model-2 • - mass fraction of dust (efficiency of dust formation): • - Z-dependent for massive stars (Vink et al. 2001), • AGBs (van Loon 2000, C-rich class] • efficiency of star formation • (BH, NS, WD) • - from Drory et al. (2005) • mass fraction of collapsed barions • - standard CDM cosmology (Haiman & Loeb 1997) • - evolutionary timescales • 1, for z  zcr,i • 0, for z > zcr,i

  20. Model-3

  21. SMCvsMWG Chemistry: SMC vs. MWG

  22. Z-depend.

  23. Dust outp.: SN Dust output from SNII; theory: Todini & Ferrara 2001

  24. Dust yields Left – pessimistic: SNII – 1/10 theory, Massive st. - Right – optimistic (realistic?): SNII – 1/30 theory, Massive st. -

  25. Conclusions • Conclusions: • Dominance of SNII at z>3 …IF dust can form in SN • ejecta… • ~10 overestimated theoretical for SNII • (cf. SN 2002hh: Barlow et al. 2005) • Fairly short dust-survival times, T 0.4 Gyr, in line • with Jones et al. (1994)

  26. Things to do • Things to do: • Dust formation and dust survival in the SN ejecta • (SEEDS collaboration, PI M.J. Barlow) • Dust formation/survival in the winds of massive stars • Dust formation (efficiency) and dust chemistry at Z~0

  27. p

  28. p

More Related