1 / 6

Stellar Evolution

Stellar Evolution. Chapter 29.3. A. Star Size Mass – the mass of a star determines the size, temperature, and brightness of the star. - The greater the mass, the greater the gravity. - The greater the gravity the hotter and brighter the star burns.

shad-roach
Download Presentation

Stellar Evolution

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Stellar Evolution Chapter 29.3

  2. A. Star Size Mass – the mass of a star determines the size, temperature, and brightness of the star. - The greater the mass, the greater the gravity. - The greater the gravity the hotter and brighter the star burns. - Hotter and brighter stars burn up fuel at a faster rate.

  3. B. Stellar Evolution 1. Beginning - Stars form from a large rotating cloud of gas and dust called a nebula. - As gravitational forces cause the cloud to contract, a center, called a protostar, begins to form. - When the core temperature of the protostar reaches a high enough temperature, fusion of hydrogen begins and a star is born. Public Domain – www.nasa.gov

  4. 2. Small Stars (Sun-Sized) - Sun-sized stars take about 10 billion years to expend their hydrogen fuel. - When the hydrogen fuel in the core is exhausted, the star swells to become a red giant. - The helium in the core fuses to form carbon until the helium is used up. - At this point the star shrinks to form a white dwarf. Wikipedia Image of Sirius A and Sirius B taken by the Hubble Space Telescope. Sirius B, which is a white dwarf, can be seen as a faint dot to the lower left of the much brighter Sirius A Wikipedia

  5. 3. Large Stars - These stars use up their fuel much quicker and therefore do not last as long as smaller stars. - When their fuel is consumed, the internal gravitational forces may cause electrons & protons in the core to fuse together to form neutrons, thus forming a neutron star. - Neutron stars may form pulsars, or rotating beacons of light. Public Domain – www.nasa.gov Public Domain – www.nasa.gov

  6. Video – Fusion Produces Elements (3:42 min) - Others may begin to fuse heavier elements until an iron core develops and explodes in a supernova. - Very massive stars may be too large to form neutron stars and collapse in on themselves to from a black hole. Public Domain – www.nasa.gov

More Related