250 likes | 398 Views
Electrochemistry. Dr. M. Sasvári. Chemistry Lectures. Electrochemistry Galvanic Cells. Electrode Potential. Half cell reactions (Electrode potential). electrons are lost oxidation (reducing agent). electrons are taken reduction (oxidizing agent). Anode (-). Cathode (+).
E N D
Dr. M. Sasvári Chemistry Lectures Electrochemistry Galvanic Cells
Electrode Potential Half cell reactions (Electrode potential) electrons are lost oxidation (reducing agent) electrons are taken reduction (oxidizing agent) Anode (-) Cathode (+) e.g. Cu (s) / Cu 2+ 0 = + 0.34 V e.g. Zn (s) / Zn 2+ 0 = - 0.76 V
- - Cation Electrodes e- Cation electrodes with negative electrode potential are ready to loose electrons + e- - Zn Zn2+ + 2 e- red. form ox. form
+ + Cation Electrodes e- Cation electrodes with positive electrode potential are ready to take electrons + e- + + 2 e- Cu2+ Cu ox. form red. form
The Hydrogen Electrode H+ (aq) H2 Pt e0= 0
Voltaic (Galvanic) Cells The Electromotive Force. Two electrodes are connected: Redox reaction occurs If separated in space: Generation of electric current Electromotive force (Emf): The difference of two electrode potentials Emf = (+)- (-)
Def Calculation of Emf? Redox reactions Oxidation Reduction Oxidation potential (to loose e-) Reduction potential (to take e-) Emf = red.pot.(+)+ (- red. pot) (-)
Galvanic Cell e- + + e- e- - +1 Zn Cu2+ Cu Zn2+ + + red. form ox. form red. form ox. form
Why do we need salt bridge? Daniell cell: Zn Cu2+ Cu Zn2+ + + SO42- SO42- • Transports counter ions • Closes the circuit
Zn Normal/Standard Electrode Potentials H2(g) / H+ (1M) cathode (+) Zn (s) / Zn2+ (1M) anode (-) Measured Emf = 0.76 e0 = - 0.76 V oxidation Zn Zn2+ + 2e- e0 = 0 V reduction H+ + e- 1/2 H2
Cu Normal/standard electrode potentials H2(g) / H+ (1M) anode (-) Cu (s) / Cu2+ (1M) cathode (+) Measured Emf = 0.34 e0 = 0 V oxidation 1/2 H2 H+ + e- e0 = + 0.34 V reduction Cu2+ + 2e- Cu
Measuring Normal/standard electrode potentials of Copper
Normal electrode potential: • A comparison to Normal H electrode • Concentrations are 1 M (1 activity) • pH = 0, Temp= 0oC Standard electrode potential: • pH = 0, Temp= 25oC Biochemistry: pH = 7 and 37oC
Electromotive Force (Emf) and the Gibbs free energy change of a reaction G= max. useful work W= Emf Q = Emf n F where G: Gibbs free energy change • Where • Emf: Voltage difference (V) • Q: Electric charge (Cb) • n= number of electrons • F= Faraday number G0 = - n F Emf 0
Calculating G0 from Emf e.g. Daniell cell: Emf = 1.1 V G0 =-2 x 96500 x 1.1 (J) Calculating Keq from G0 G0 = - RT lnKeq = - 2.3RT log Keq Calculating the Keq from Emf - n F Emf0 = - 2.3RT log Keq Emf0 =(2.3 RT/nF)log Keq at 25 degree: Emf0 = (0.059/n)log Keq
The Nernst Equation Dependence of Emf on the concentrations: G = G0 + 2.3 RT log Q -nF Emf = -nF Emf0 + 2.3 RT log Q Nernst equation: Emf = Emf0 - (2.3 RT/nF) log Q where Q=cproducts/creactants
e- Concentration dependence of the electrode potential : Reduction potential: ox. form + e- reactant red. form product Nernst equation for half cells: =0 - (2.3 RT/nF) log (cred/cox) = 0 - (0.059/n) log (cred/cox) = 0 + (0.059/n) log (cox/cred) =0 + (0.06/n) log (cox/cred)
Li Li+ + e - 1/2 I2 + e-I - Voltaic cells: Examples A solid-state lithium battery implanted within the chest to power heart pacemakers Lasts about 10 years If discharged: has come to equilibrium LiI crystals Anode (-) : Li/Li+ Cathode (+) : I-/I2 complex
Pb4+ + 2e-Pb2+ Pb Pb2+ + 2e- PbO2(s) + 4H+PbSO4(s) + 2H2O Pb(s) + H2SO4PbSO4(s) + 2H+ Rechargeable batteries: Lead storage cell Anode (-) : Pb/Pb2+ Cathode (+) : Pb4+/Pb2+
Fuel cells (see: Ebbing) e.g. supplying space shuttle orbiters by electricity 2H2 + O2 = 2H2O A Hydrogen-Oxygen fuel cell: The galvanic cell: Anode (-) Ox. 2H2(g)+4 OH- 4H2O + 4e- e0= -0.42 Chatode (+) Red. O2(g) + 2 H2O + 4e- 4 OH- e0= +1.23 Electromotive force: Eme0= +1.23 - (-0.42)=+1.65 V (25 degree, 1 atm, pH 7) 200oC, 20-40atm, alkalic pH : Emf is much higher
Rusting of iron is an electrochemical process Fe Fe2+ + 2e- 1/2 O2+H2O+ 2e-+2OH- A single drop of water on the iron forms a galvanic cell with the oxygen of the air Anode (-): Fe/Fe2+ Cathode (+) : O2/OH -
Cathodic protection of a buried steel pipe Mg2+ + 2e- Mg e0 = - 2,38 V Fe2+ + 2e- Fe e0 = - 0,41 V - O2(g) + 2H2O(l)+ 4 e- 4OH-(l) e0 = + 1,23 V + Redox reaction: +2 2Mg+ O2+2H2O 2Mg(OH)2 (see: Ebbing)
+ e- Thank you for your attention!