1 / 28

Optimizing Compilers CISC 673 Spring 2011 Static Single Assignment II

Optimizing Compilers CISC 673 Spring 2011 Static Single Assignment II. John Cavazos University of Delaware. What is SSA?. Many data-flow problems have been formulated To limit number of analyses, use single analysis to perform multiple transformations  SSA

shanae
Download Presentation

Optimizing Compilers CISC 673 Spring 2011 Static Single Assignment II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Optimizing CompilersCISC 673Spring 2011Static Single Assignment II John Cavazos University of Delaware

  2. What is SSA? • Many data-flow problems have been formulated • To limit number of analyses, use single analysis to perform multiple transformations  SSA • Compiler optimization algorithms enhanced or enabled by SSA: • Constant propagation • Dead code elimination • Global value numbering • Partial redundancy elimination • Register allocation

  3. SSA Construction Algorithm (High-level sketch) 1. Insert  -functions 2. Rename values

  4. SSA Construction Algorithm (Less high-level sketch) • Insert  -functions at every join for every name • Solve reaching definitions • Rename each use to def that reaches it (will be unique) What’s wrong with this approach • Too many  -functions! To do better, we need a more complex approach Builds maximal SSA

  5. SSA Construction Algorithm (Less high-level sketch) 1. Insert  -functions a.) calculate dominance frontiers b.) find global names for each name, build list of blocks that define it c.) insert  -functions

  6. Insert  -functions • global name n worklist ← Block(n) // blocks in which n is assigned  block b ∈ worklist  block d in b’s dominance frontier insert a  -function for n in d add d to worklist

  7. Computing Dominance Frontiers • Only join points are in DF(n) for some n • Simple algorithm for computing dominance frontiers • For each join point x (i.e., |preds(x)| > 1) • For each CFG predecessor of x • Run up to IDOM(x ) in dominator tree, • add x to DF(n) for each n betweenx and IDOM(x )

  8. B0 B0 B1 B1 B2 B3 B2 B3 B4 B4 B5 B5 B6 B6 B7 B7 Dominance Frontiers For each join point x For each CFG pred of x Run to IDOM(x ) in dom tree, add x to DF(n) for each n between x and IDOM(x ) Flow Graph Dominance Tree

  9. B0 B1 x (...) B2 B3 B4 B5 x ... B6 x (...) • DF(4) is {6}, so  in 4 forces -function in 6 B7 x (...) •  in 6 forces -function in DF(6) = {7} •  in 7 forces -function in DF(7) = {1} Dominance Frontiers & -Function Insertion • A definition at n forces a -function at m iff • n  DOM(m) but n DOM(p) for some p  preds(m) • DF(n ) is fringe just beyond region n dominates Dominance Frontiers •  in 1 forces -function in DF(1) = Ø (halt ) For each assignment, we insert the  -functions

  10. B0 i > 100 i  ... B1 a (a,a) b  (b,b) c  (c,c) d (d,d) i (i,i) a  ... c  ... B2 B3 b  ... c  ... d  ... a  ... d  ... d  (d,d) c  (c,c) b  ... B4 B5 B6 d  ... c  ... B7 a (a,a) b  (b,b) c (c,c) d (d,d) y  a+b z  c+d i  i+1 i > 100 Excluding local names avoids ’s for y & z • With all the -functions • Lots of new ops • Renaming is next Assume a, b, c, & d defined before B0

  11. SSA Construction Algorithm (Less high-level sketch) 2. Rename variables in a pre-order walk over dominator tree (uses counter and a stack per global name) Staring with the root block, b a.) generate unique names for each  -function and push them on the appropriate stacks

  12. SSA Construction Algorithm (Less high-level sketch) • Rename variables (cont’d) b.) rewrite each operation in the block i. Rewrite uses of global names with the current version (from the stack) ii. Rewrite definition by creating & pushing new name c.) fill in  -function parameters of successor blocks d.) recurse on b’s children in the dominator tree e.)<on exit from block b> pop names generated in b from stacks

  13. SSA Construction Algorithm Adding all the details ... Rename(b) for each  -function in b, x  (…) rename x as NewName(x) for each operation “x  y op z” in b rewrite y as top(stack[y]) rewrite z as top(stack[z]) rewrite x as NewName(x) for each successor of b in the CFG rewrite appropriate  parameters for each successor s of b in dom. tree Rename(s) for each operation “x  y op z” in b pop(stack[x]) for each global name i counter[i]  0 stack[i]   call Rename(n0) NewName(n) i  counter[n] counter[n]  counter[n] + 1 push ni onto stack[n] return ni

  14. B0 i > 100 i  ... B1 a (a,a) b  (b,b) c (c,c) d (d,d) i (i,i) a  ... c  ... Assume a, b, c, & d defined before B0 B2 B3 b  ... c  ... d  ... a  ... d  ... d  (d,d) c  (c,c) b  ... B4 B5 B6 d  ... c  ... B7 a (a,a) b  (b,b) c (c,c) d (d,d) y  a+b z  c+d i  i+1 i has not been defined i > 100 Before processing B0 a b c d i Counters Stacks 1 1 1 1 0 a0 b0 c0 d0 20

  15. B1 a (a0,a) b  (b0,b) c (c0,c) d (d0,d) i (i0,i) a  ... c  ... B2 B3 b  ... c  ... d  ... a  ... d  ... B4 B5 d  ... c  ... i > 100 B0 i > 100 i0 ... End of B0 d  (d,d) c  (c,c) b  ... a b c d i B6 Counters Stacks 1 1 1 1 1 B7 a (a,a) b  (b,b) c (c,c) d (d,d) y  a+b z  c+d i  i+1 a0 b0 c0 d0 i0 21

  16. B1 a1 (a0,a) b1  (b0,b) c1 (c0,c) d1 (d0,d) i1 (i0,i) a2 ... c2  ... B2 B3 b  ... c  ... d  ... a  ... d  ... B4 B5 d  ... c  ... i > 100 B0 i > 100 i0 ... End of B1 d  (d,d) c  (c,c) b  ... a b c d i B6 Counters Stacks 3 2 3 2 2 B7 a (a,a) b  (b,b) c (c,c) d (d,d) y  a+b z  c+d i  i+1 a0 b0 c0 d0 i0 a1 b1 c1 d1 i1 c2 a2 22

  17. B1 a1 (a0,a) b1 (b0,b) c1 (c0,c) d1 (d0,d) i1 (i0,i) a2 ... c2  ... B2 B3 b2 ... c3  ... d2  ... a  ... d  ... B4 B5 d  ... c  ... i > 100 B0 i > 100 i0 ... End of B2 d  (d,d) c  (c,c) b  ... a b c d i B6 Counters Stacks 3 3 4 3 2 B7 a (a2,a) b  (b2,b) c (c3,c) d (d2,d) y  a+b z  c+d i  i+1 a0 b0 c0 d0 i0 a1 b1 c1 d1 i1 d2 b2 c2 a2 c3 23

  18. B1 a1 (a0,a) b1 (b0,b) c1 (c0,c) d1 (d0,d) i1 (i0,i) a2 ... c2  ... B2 B3 b2 ... c3  ... d2  ... a  ... d  ... B4 B5 d  ... c  ... i > 100 B0 i > 100 i0 ... Before starting B3 d  (d,d) c  (c,c) b  ... a b c d i B6 Counters Stacks 3 3 4 3 2 B7 i ≤ 100 a (a2,a) b  (b2,b) c (c3,c) d (d2,d) y  a+b z  c+d i  i+1 a0 b0 c0 d0 i0 a1 b1 c1 d1 i1 c2 a2 24

  19. B1 a1 (a0,a) b1 (b0,b) c1 (c0,c) d1 (d0,d) i1 (i0,i) a2 ... c2  ... B2 B3 b2 ... c3  ... d2  ... a3 ... d3  ... B4 B5 d  ... c  ... i > 100 B0 i > 100 i0 ... End of B3 d  (d,d) c  (c,c) b  ... a b c d i B6 Counters Stacks 4 3 4 4 2 B7 a (a2,a) b  (b2,b) c (c3,c) d (d2,d) y  a+b z  c+d i  i+1 a0 b0 c0 d0 i0 a1 b1 c1 d1 i1 c2 d3 a2 a3 25

  20. B1 a1 (a0,a) b1 (b0,b) c1 (c0,c) d1 (d0,d) i1 (i0,i) a2 ... c2  ... B2 B3 b2 ... c3  ... d2  ... a3 ... d3  ... B4 B5 d4  ... c  ... i > 100 B0 i > 100 i0 ... End of B4 d  (d4,d) c  (c2,c) b  ... a b c d i B6 Counters Stacks 4 3 4 5 2 B7 a (a2,a) b  (b2,b) c (c3,c) d (d2,d) y  a+b z  c+d i  i+1 a0 b0 c0 d0 i0 a1 b1 c1 d1 i1 c2 d3 a2 a3 d4 26

  21. B1 a1 (a0,a) b1 (b0,b) c1 (c0,c) d1 (d0,d) i1 (i0,i) a2 ... c2  ... B2 B3 b2 ... c3  ... d2  ... a3 ... d3  ... B4 B5 d4  ... c4  ... i > 100 B0 i > 100 i0 ... End of B5 d  (d4,d3) c  (c2,c4) b  ... a b c d i B6 Counters Stacks 4 3 5 5 2 B7 a (a2,a) b  (b2,b) c (c3,c) d (d2,d) y  a+b z  c+d i  i+1 a0 b0 c0 d0 i0 a1 b1 c1 d1 i1 c2 d3 a2 a3 c4 27

  22. B1 a1 (a0,a) b1 (b0,b) c1 (c0,c) d1 (d0,d) i1 (i0,i) a2 ... c2  ... B2 B3 b2 ... c3  ... d2  ... a3 ... d3  ... B4 B5 d4  ... c4  ... i > 100 B0 i > 100 i0 ... End of B6 d5  (d4,d3) c5  (c2,c4) b3  ... a b c d i B6 Counters Stacks 4 4 6 6 2 B7 a (a2,a3) b  (b2,b3) c (c3,c5) d (d2,d5) y  a+b z  c+d i  i+1 a0 b0 c0 d0 i0 a1 b1 c1 d1 i1 c2 d3 a2 b3 a3 c5 d5 28

  23. B1 a1 (a0,a) b1 (b0,b) c1 (c0,c) d1 (d0,d) i1 (i0,i) a2 ... c2  ... B2 B3 b2 ... c3  ... d2  ... a3 ... d3  ... B4 B5 d4  ... c4  ... i > 100 B0 i > 100 i0 ... Before B7 d5  (d4,d3) c5  (c2,c4) b3  ... a b c d i B6 Counters Stacks 4 4 6 6 2 B7 a (a2,a3) b  (b2,b3) c (c3,c5) d (d2,d5) y  a+b z  c+d i  i+1 a0 b0 c0 d0 i0 a1 b1 c1 d1 i1 c2 a2 29

  24. B1 a1 (a0,a4) b1 (b0,b4) c1 (c0,c6) d1 (d0,d6) i1 (i0,i2) a2 ... c2  ... B2 B3 b2 ... c3  ... d2  ... a3 ... d3  ... B4 B5 d4  ... c4  ... i > 100 B0 i > 100 i0 ... End of B7 d5  (d4,d3) c5  (c2,c4) b3  ... a b c d i B6 Counters Stacks 5 5 7 7 3 B7 a4 (a2,a3) b4 (b2,b3) c6 (c3,c5) d6 (d2,d5) y  a4+b4 z  c6+d6 i2  i1+1 a0 b0 c0 d0 i0 a1 b1 c1 d1 i1 b4 c2 d6 a2 i2 a4 c6 30

  25. B1 a1 (a0,a4) b1 (b0,b4) c1 (c0,c6) d1 (d0,d6) i1 (i0,i2) a2 ... c2  ... B2 B3 b2 ... c3  ... d2  ... a3 ... d3  ... B4 B5 d4  ... c4  ... i > 100 B0 i > 100 i0 ... • After renaming • Semi-pruned SSA form • We’re done … d5  (d4,d3) c5  (c2,c4) b3  ... B6 B7 a4 (a2,a3) b4 (b2,b3) c6 (c3,c5) d6 (d2,d5) y  a4+b4 z  c6+d6 i2  i1+1 Semi-pruned  only names live in 2 or more blocks are “global names”. 31

  26. SSA Construction Algorithm (Pruned SSA) What’s this “pruned SSA” stuff? • Minimal SSA still contains extraneous  -functions • Inserts some -functions where they are dead • Would like to avoid inserting them

  27. SSA Construction Algorithm (Two Ideas) • Semi-pruned SSA: discard names used in only one block • Significant reduction in total number of  -functions • Needs only local Live information (cheap to compute) • Pruned SSA: only insert  -functions where their value is live • Inserts even fewer  -functions, but costs more to do • Requires global Live variable analysis (more expensive) In practice, both are simple modifications to step 1.

  28. ... X17  x10 ... X17  x11 X17(x10,x11) ...  x17 ...  x17 SSA Deconstruction At some point, we need executable code • Few machines implement  operations • Need to fix up the flow of values Basic idea • Insert copies -function pred’s • Simple algorithm • Works in most cases • Adds lots of copies • Many of them coalesce away

More Related