660 likes | 845 Views
《 机械设计 》 课 程 总 复 习. 本章重点是载荷和应力分析。 一、载荷 要了解载荷的形式和种类, 形式有: 集中力 F ( N,kN ) 、 转矩 T(Nm,Nmm ) 、 弯矩 M(Nmm) 、 功率 P(KW) 种类有: 1 、静载荷 不随时间变化或变化非常缓慢的载荷 2 、变载荷 大小和方向随时间变化而变化的载荷 1 )随机变载荷 无规律变化 2 )循环变载荷 有规律变化 a 一般循环变载荷
E N D
《机械设计》 课 程 总 复 习
本章重点是载荷和应力分析。 一、载荷 要了解载荷的形式和种类, 形式有: 集中力 F(N,kN )、 转矩 T(Nm,Nmm )、 弯矩 M(Nmm)、 功率P(KW) 种类有: 1、静载荷 不随时间变化或变化非常缓慢的载荷 2、变载荷 大小和方向随时间变化而变化的载荷 1)随机变载荷 无规律变化 2)循环变载荷 有规律变化 a 一般循环变载荷 b 对称循环变载荷 c 脉动循环变载荷 第一章 绪论
二、 应力分析 1、应力种类 (1)静应力 对称循环变应力 (a)循 环 变 应 力 脉动循环变应力 (2)变应力 (b) 随机变应力(略) 一般循环变应力
掌握应力的种类和变应力的主要参数的含义: 应 力 幅: σa =(σmax - σmin)/ 2 平均应力:σm =(σmax + σmin)/ 2 最大应力:σmax 最小应力:σmin 应力特性系数:r = σmin / σmax
第二章 摩擦、磨损和润滑 1、了解摩擦、磨损的基本概念,掌握润滑状态的概念 边界润滑 边界润滑是指两摩擦表面被吸附在表面的边界 膜隔开,其摩擦性质与流体的粘度无关,只与边界膜和表面的 吸附性质有关。 液体润滑 当摩擦表面间的润滑膜厚度大到足以将两个表 面完全隔开,即形成了完全的液体润滑 。 混合润滑 当摩擦表面间处于边界摩擦和流体摩擦的混 合状态时称为混合润滑。
2、了解机械零件的一般磨损过程:大致分为三个阶段2、了解机械零件的一般磨损过程:大致分为三个阶段 1)跑合阶段新的摩擦副表面较粗糙,在10% 50%的额定载荷下进行试运转,使摩擦表面的凸峰被磨平,实际接触面积逐步增大,压强减小,磨损速度在跑合开始阶段很快。跑合阶段对新的机械是十分必要的。 2)稳定磨损阶段经过跑合,摩擦表面逐步被磨平,微观几何形状发生改变,建立了弹性接触的条件,进入稳定磨损阶段,这时零件的磨损速度缓慢,它表征零件正常工作寿命的长短。 3) 急剧磨损阶段 经过长时间的稳定磨损阶段,积累了较大的磨损量,零件开始失去原来的运动轨迹,磨损速度急剧增加,间隙加大,精度降低,效率减小,出现异常的噪声和振动,最后导致零件失效。
3、润滑油、润滑脂以及添加剂 润滑油的主要质量指标是黏度,黏度越大,指油越稠,油膜的承载能力就越高。温度对粘度的影响很大,温度升高,粘度降低,在表明润滑油的粘度时,一定要注明温度,否则没意义! 润滑脂的主要质量指标是 锥入度:它是表征润滑脂稀稠程度的指标,针入度越大,润滑脂就越稀。 普通润滑油和润滑脂在一些十分恶劣的工作条件下(如高温、低温、重载、真空等)会很快劣化变质,失去工作能力。为了提高它们的品质和使用性能,常加入某些分量很小(从百分之几到百万分之几)但对其使用性能的改善起巨大作用的物质,这些物质称为添加剂。
抗氧化添加剂 可抑制润滑油氧化变质; 降凝添加剂 可降低油的凝点; 油性添加剂 可提高油性; 极压添加剂 可以在金属表面形成一层保护膜,以减 轻磨损 清净分散添加剂 可使油中的胶状物分散和悬浮,以 防止堵塞油路和减少因沉积而造成的剧 烈磨损。
第三章 圆柱齿轮传动 一、圆柱齿轮受力分析 一对齿轮互相啮合,在啮合线上 存在着一个法向力 Fn,忽略摩擦力, 把分布力集中到齿宽中点!可分解成: 切向力: Ft = Fncos 径向力: Fr = Fnsin 因为切向力为已知力:Ft = 2T1/d1 式中:T1 = 9.55X106 P1/n1(Nmm) 力的大小: 切向力: Ft = 2T1/d1 径向力:Fr = Fttg 法向力: Fn = Ft /cos 力的方向: 切向力: Ft1 = -Ft2 Ft1与n1相反,Ft2与n2相同 径向力:Fr1 = -Fr2指向各自的圆心 法向力: Fn1 = -Fn2
二、斜齿圆柱齿轮受力分析 法向力Fn可分解成: 切向力: Ft = Fn cosncos 径向力: Fr = Fn sinn 轴向力: Fx = Fn cosnsin 因为切向力为已知力: Ft = 2T1/d1 径向力:Fr = Fttgn/cos 轴向力: Fx = Fttg 法向力: Fn = Ft/cosncos 力的方向: 切向力: Ft1 = -Ft2 Ft1与n1相反, Ft2与n2相同 径向力:Fr1 = -Fr2指向各自的圆心 轴向力: Fx1 = -Fx2左右手定则 法向力: Fn1 = -Fn2
轴向力的判断用左右手定则: 只适用于主动齿轮 左右手定则: 左旋齿轮伸左手,右旋齿轮伸 右手,四指方向与转动方向相同, 拇指方向即为轴向力方向! 左、右旋齿轮的判断: 齿轮轴线与人的身体平行,正向 看过去,轮齿线左边高为左旋, 右边高为右旋!
三、 齿轮传动的失效形式 齿轮的失效主要发生在轮齿上,其余部分,如轮毂、轮辐 部分为金属实体,一般很少失效。 1. 疲劳断齿 齿体失效 2. 过载断齿 3. 偏载断齿 齿轮失效形式 1. 点蚀 齿面失效 2. 胶合 3. 磨损 4. 塑性变形 通常开式齿轮的主要失效形式是齿面磨粒磨损,导致齿体变薄,进而断齿。闭式齿轮软齿面传动主要失效形式是齿面疲劳点蚀,闭式齿轮硬齿面传动主要失效形式是齿根弯曲折断。
四、 选材 齿轮的材料及热处理方法的选择,应根据齿轮 传动载荷大小与性质,工作环境条件,结构及经济 性等多方面要求来确定。 大小齿轮材料不同 小齿轮基园小,齿廓曲线弯曲大,齿根部薄, 再之,小齿轮齿数少,转速高,受循环应力次数 多于大齿轮。故其材料要比大齿轮好些。假如大小齿轮材料一样,应采用 不同的热处理方法,使小齿轮的齿面硬度高于大齿轮 30‾50HBS。 软硬齿面啮合的齿轮适合于上述原则,假如硬硬齿面的配对的齿轮, 齿面硬度差基本保持相同。 软齿面,硬度小于350HBS , 硬齿面,两齿轮硬度都大于350HBS 。
第四章 锥齿轮传动 一、 概述 锥齿轮传动广泛 用于两相交轴或两交 错轴之间的运动和动 力的传递! 通常是90度相交! 锥齿轮的几何参数是 在大端上测量。
二、直齿圆锥齿轮受力分析 为了计算简便,将锥齿轮沿整个齿宽 作用的法向分布力的合力,看作是作用 在齿宽的中点! 法向力Fn可分解成三 个力: 切向力、径向力、轴向力 力的方向: 切向力: Ft1 = -Ft2 Ft1与n1相反, Ft2与n2相同 径向力:Fr1 = - Fx2指向各自的圆心 轴向力: Fx1 = - Fr2 指向各自的大端
第五章 蜗杆传动 §5-1 概述 蜗杆传动用于两交错轴(一般为垂直交叉)间转矩的传递 一、蜗杆传动的特点 1、传动比大: i=n1/n2=Z2/Z1 传递动力时:i=10-80,可达100 传递运动时:i 最大可达1000 2、传动平稳,噪音小 3、效率低:一般时 = 0.7左右 自锁时 ≤ 0.5 4、易磨损、用铜合金制造,造价高。
§5-2 阿基米德圆柱蜗杆传动 主平面:垂直与蜗轮的轴线并且通过蜗杆的轴线的平面。 一、模数、压力角和正确啮合条件 ma1 = mt2 = m a1 = t2 = (轴面=端面=标准) = (方向一致) (蜗杆螺旋线导程角=蜗轮轮齿螺旋角)
§5-3 蜗杆传动的效率 传动效率 总效率: = 123 式中滚动轴承效率:2 = 0.99 — 0.995 搅油效率: 3 = 0.94 左右 对总效率影响最大的是啮合效率: 式中: ’=arctg(f’) 当量摩擦角 f’—当量摩擦系数 蜗杆的转速直接影响当量摩擦系数f’,速度越大f’越小, ’ 当量摩擦角也越小,效率就越高。所以,通常将蜗杆传动 布置在高速级。
当 = 45-’/2 时,有最大值,但因为 越大,加工越 困难,所以标准规定 max = 3341’24’’,在此范围内,较大的 对应较多的Z1,对于闭式传动: Z1=1, = 0.7 — 0.75 Z1=2, = 0.75 — 0.82 Z1=3-4, = 0.82 — 0.92 对于开式传动: Z1=1-2时, = 0.6 — 0.7
5-5 蜗杆传动受力分析 一、法向力 Fn 及其分力 通常蜗杆为主动轮,其法向力可 分解为:切向力、径向力、轴向力 二、各力的方向 当蜗杆为主动时,并且忽略摩擦力: 切向力:Ft1 = - Fx2 (Ft1与n1反向,Ft2与n2同向) 径向力:Fr1 = - Fr2 (指向各自的圆心) 轴向力:Fx1 = - Ft2 (左右手定则,只适用主动轮)
三、受力分析投影图 在啮合点处,蜗杆、蜗轮的三个分力如下图所示: 首先,知道蜗杆的转向n1,便知蜗杆的切向力Ft1(与转向相反),它的 反力是蜗轮的轴向力FX2,又知道蜗杆的旋向,按左右手定则,可知道蜗杆的 轴向力FX1,它的反力是蜗轮的切向力Ft2,知道蜗轮的切向力,就知蜗轮 的转向n2。径向力Fr指向各自的圆心!
已知:蜗杆的旋向和转向,画出蜗杆和 蜗轮三个分力的方向。
6-7 蜗杆传动的润滑与热平衡计算 一、蜗杆传动的润滑 由于蜗杆传动效率低,发热量大,温升高,良好的润滑除减摩外,还可冷却,以保证正常的油温和粘度,防止胶合的发生。为了避免过大的搅油损失,对下置蜗杆传动常取油面浸泡1—2个齿高,对上置蜗杆传动,油面不超过1/2—1/3蜗轮半径。 ( v1≤5 m/s蜗杆下置, v15 m/s蜗杆上置 ) 二、热平衡计算 因为蜗杆传动效率低,发热量大,相对滑动速度高,容易引起润滑油的温度升高,黏度降低,从而使油膜破坏,产生胶合失效。
1、单位时间内功率损失而产生的热量: 2、单位时间内散发出去的热量: 3、热平衡条件: 得到达到热平衡时的温度: 式中:Ks—散热系数:通风良好时 Ks=14—17.45W/m2℃ 通风不佳时 Ks=8.15—10.5W/m2℃ A—散热面积 m2 T0—周围空气温度 t1—达到热平衡时的温度,控制在60-70C
三、提高散热能力的措施: 由热平衡时温度公式可以看出 要提高散热能力,减小热平衡时的温度,可设法 1、提高蜗杆的传动效率 2、增大散热面积A 如在减速器箱体外加散热片等 3、提高散热系数 Ks 如 1)在蜗杆轴端加装风扇,可使 Ks=21—28 5W/m2℃ 2)在油内装蛇形循环冷却水管 3)采用喷油润滑
已知:n1的转向,为使中间轴II的轴向力最小,问:已知:n1的转向,为使中间轴II的轴向力最小,问: 斜齿轮的旋向应如何?
第七章 带传动 一、熟悉带传动的力 最大圆周力的表达式: 影响带传动能力的主要因素: 1、初拉力:F0 2、小带轮包角:α1 3、带与带轮间的摩擦系数:f,fv 4、带的型号 截面尺寸大的V带,能传递更大的力! 5、带的根数 带的根数多,传动能力就越大! 6、带速: 带速越大,带的质量越大,离心力越大,正 7、带的质量 压力减小,摩擦力小,带传动能力减小。
二、应力分析 1、紧边拉应力1和松边拉应力2: 1 = F1 / A (MPa) 2 = F2 / A (MPa) 2、离心拉应力c: c = qv2/ A 3、弯曲应力: b1 = 2h0E / d1 b2 = 2h0E / d2 4、最大应力max:在A点处。
三、弹性滑动与打滑 弹性滑动是由于带的弹性引起的,他造成带速和 轮速之间的速度差,形成相对滑动,降低传动效率, 造成传动比不稳定,加速带的磨损,他是不可避免的, 但它不影响带的正常工作。 打滑 是负载超过带的最大有效圆周力,带不动负载,便发生打滑。打滑是带传动的一种失效形式。尽量避免。
四、张紧轮 ( 中心距不可调的场合 ) 张紧轮要安装在带的内侧、松边、靠近大带轮 内侧:避免带受到双向的弯曲应力 松边:带本来就松弛,易于调节 靠近大带轮:对小带轮的包角影响小。
第十章 螺旋传动 一、螺纹主要参数 1、大径 d:螺纹标准中的公称直径,螺纹的最大直径 2、小径 d1: 螺纹的最小直径,强度计算中螺杆危险断 面的计算直径。 3、中径 d2: 近似于螺纹的平均直径, d2 (d1 + d) / 2 4、螺距 p: 相邻两螺纹牙平行侧面间的轴向距离。 5、导程 s: 同一条螺纹线上两螺纹牙之间的距离。 s = n·p 6、螺旋升角 λ: 中径上s=πd2tgλλ =arctg(s/ π·d2)
二、螺纹联接的防松 螺纹联接虽然能自锁,但在受到冲击、振动、温度变化等 瞬时,螺纹联接的摩擦力会消失,产生松动,故要有可靠的防松措施。 常用的放松措施有: (表18—3) 1、弹簧垫圈 4、尼龙圈锁紧螺母 2、对顶螺母 5、槽形螺母和开口销 3、止动垫片 6、圆螺母带翅垫片 7、钢丝串联 8、冲点、粘接
四、提高螺栓联接强度的措施 1、改善螺纹牙间载荷分配不均现象 1)、悬置螺母 2)、内斜螺母 3)、环槽螺母 2、减小螺栓的应力幅 由应力幅的公式: 看出:减小应力幅,即减小 Kc = CL / (CL + CF) 1)、减小螺栓的刚度: CL 柔性螺栓(中空或光杆部分变细) 螺母下垫弹性垫圈 2)、增大被联接件的刚度: CF 结构上加加筋板、斜撑或加大被联接件厚度 两被联接件之间的密封选用硬材料垫圈
第十一章 轴毂联接 一、键联接 各种各样的键装 在轴与轮毂之间,以 传递转矩 1、松键 1)平键 工作面是两侧面 两个按180º布置 标注:B16100 – GB1096 – 79 B:型号( A不写),16:宽,100:长
2)半圆键 多用于锥形轴, 可适应轴的变形, 键槽较深,对轴削弱较大,两个应并排布置。 标注:610 25 – GB1099 – 79 6:宽,10:高,25:直径
二、平键的选择与校核 1、选择 首先按使用要求选择键的主要类型,再按轴的直 径选择键的型号(剖面尺寸:宽度 b,高度 h以及轴上槽深 t1 、轮毂上槽深 t2 ),按轮毂长度选择键的长度L , L应稍小与 轮毂的长度,最后对联接进行必要的强度校核。 2、校核 键的主要失效形式是压溃、其次是剪切 压溃强度条件: 剪切强度条件:
第十二章 轴 一、分类 按承受载荷的情况分: 1)传动轴: 只承受转矩 T。 2)心 轴: 只承受弯矩 M。 3)转 轴: 即承受弯矩 M,也承受转矩 T。 二、轴的直径估算 对于转轴,按 扭转强度条件: 考虑弯矩的影响,适当降低[τ]值。 式中: P:作用在该轴上的功率( KW )n: 轴的转速 (rpm) d: 轴的最小直径
式中 只与材料有关 希望同学们记住这个公式: 由公式可以看出:轴的直径与功率成正比,与转 速成反比。这也正好说明一般减速器高速级轴的直径 要比低速级轴的直径要小些。
三、轴的结构设计 1、轴上圆角要小于轮毂上圆角或倒角 2、轴上长度要小于轮毂上相应长度2—3mm。 3、轴肩或轴环的高度一般不小于5,如果是用于滚动 轴承定位,则不能高于滚动轴承内环的三分之二。 4、各阶梯轴的轴端加倒角,便于安装。 5、键槽应在同一个方向。 6、减小应力集中,如加大圆角半径、用退刀槽 砂轮越程槽等。 7、合理安排轴的零件,减轻轴的负荷。
第十三章 滚动轴承 一、分类 1、按承受载荷分: 1)向心轴承 只承受径向力,接触角为0 2)推力轴承 只承受轴向力,接触角为90度 3)角接触轴承 既受径向力,也受轴向力,接触角越大, 所能承受的轴向力也越大! 二、滚动轴承的结构 1、内圈 2、外圈 3、滚动体 4、保持架
三、轴承寿命和载荷 1、实际寿命:L 一套滚动轴承,其中一个套圈或滚动体 的材料出现第一个疲劳扩散迹象时,一个 套圈相对另一个套圈的转数。 2、基本额定寿命:L10h 对于一个滚动轴承或一组在同样 条件下运转的近似相同的轴承,在与常用 的材料和加工质量以及常规的运转条件下, 能达到可靠性为90%的寿命。 3、基本额定动载荷:C 假想的恒定载荷,轴承在这个载 荷作用下,基本额定寿命为106。 4、当量动载荷:P 假想的恒定载荷,轴承在这个载荷 作用下,与实际载荷作用时具有相同的寿命。
四、 滚动轴承接触疲劳强度的设计计算 • 1、基本额定寿命 L10h 的计算 • 载荷与寿命有如下关系: L10Pε = 106Cε = 常数 • 则寿命为: L10= 106 (C / P)ε(转) • 寿命通常以小时为计量单位,用 L10h 表示 : L10h = L10 / 60n 再考虑温度系数 fT 和动载系数 fd 的影响 式中:n — 轴承转速(r/min) ε — 指数: 球轴承 ε = 3 滚子轴承 ε = 10/3
2、当量动载荷 P 的计算: P = X·Fr + Y·Fa 式中: Fr:为径向力, Fa:为轴向力 当 X = 1 Y = 0 当 X ≠ 1 Y ≠ 0 各种轴承的 临界值 e 及 X、Y 值,见表 13—16
3、角接触轴承 P 值的计算 对于 “3”、“7” 类轴承,由于本身结构特点,当施加径向力 Fr 后,会产生派生的轴向力 S。 (1)装配形式 : “3”、“7” 类轴承,必须成对使用! 安装有: 正装(面对面、大端对大端) 反装(背对背、小端对小端) 面对面,支点近,刚度大 悬臂形式必须反装 背对背,支点远,刚度小
(2)支点:滚动体与外滚道接触点的法线和轴线的交点为轴(2)支点:滚动体与外滚道接触点的法线和轴线的交点为轴 承在轴上的支点。 在大端一侧 (3)派生的轴向力S : S 指向大端!! 不同形式的轴承 S 有不同的计算公式 S = e · Fr α = 15° “7” 类轴承 S = 0.68 · Fr α = 25° S = 1.14 · Fr α = 40° “3” 类轴承 S = Fr / 2Y ( Y ≠ 0 时值)
(4)轴向力 Fa 的计算 如图轴承正装 1)由轴系总的径向力 Fr 计算出每个轴承的径向力 Fr1 和 Fr2 。 2)由径向力 Fr1 和 Fr2 分别计算出 S1 和 S2 。方向指向大端! 对轴系的所有轴向力进行比较 a、如果 FA + S1 > S2 轴向右移,2 轴承受压,支撑件给 2 轴 承一个反力S’2,由平衡力式 FA + S1 - S2 - S’2 = 0 则 S’2 = FA + S1 - S2 受压轴承: Fa2 = S2 + S’2 = FA + S1 不受压轴承: Fa1 = S1
b、如果 FA + S1 <S2 轴向左移,1 轴承受压,支撑件给 1 轴 承一个反力S’1,由平衡力式 FA + S1 + S’1 - S2 = 0 则 S’1 = S2 - FA - S1 受压轴承: Fa1 = S1 + S’1 = S2 - FA 不受压轴承: Fa2 = S2 c、如果 FA + S1 =S2, 轴承都不受压。 不受压轴承: Fa1 = S1 不受压轴承: Fa2 = S2 结论:不受压轴承的轴向力等于其本身派生的轴向力! 受压轴承的轴向力等于除去本身派的轴向力之外的外部 轴向力的代数和!
3)计算出 Fa1 和 Fa2 后,与Fr1 和 Fr2 进行比值 从而得到 X1,X2 和 Y1,Y2 计算出P1 = X1·Fr1 + Y1·Fa1 同理,计算出P2 = X2·Fr2 + Y2·Fa2 比较P1 、 P2 ,值大的轴承危险,代入寿命 公式,计算出轴系的寿命! 4)受压轴承与不受压轴承的判断 正装(面对面) :轴往哪边移动,哪边轴承受压 ! 反装(背对背) :轴往哪边移动,哪边轴承不受压 !
4、计算步骤 1) 由径向力 Fr1 和 Fr2 计算出每个轴承的派 生的轴向力S1 和 S2 。 2) 对轴系的所有轴向力进行比较,判断出受 压轴承与不受压轴承。计算出Fa1 和 Fa2 。 3) Fa/Fr与临界值 e 比较,得到系数 X和 Y值 4) P = X·Fr + Y·Fa,计算出P1 和 P2 ,取大值 5) 计算出基本额定寿命 L10h