1 / 14

list data

list data. list 만들기 nil : list link :  * list -> list list 사용하기 empty? : list -> bool first : list ->  rest : list -> list. map over list. (define (map f lst) (if (empty? lst) nil (link (f (first lst)) (map f (rest lst))) ) ). (define (inc n) (+ n 1))

shania
Download Presentation

list data

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. list data • list 만들기 • nil : list • link :  * list -> list • list 사용하기 • empty? : list -> bool • first : list ->  • rest : list -> list

  2. map over list (define (map f lst) (if (empty? lst) nil (link (f (first lst)) (map f (rest lst))) ) )

  3. (define (inc n) (+ n 1)) (map inc ‘(1 2 3)) (define (square n) (* n n)) (map square ‘(1 2 3))

  4. fold over list (define (accumulate op init lst) (if (empty? lst) init (op (first lst) (accumulate op init (rest lst))) ) )

  5. binary tree data • tree 만들기 • leaf :  -> tree • node : tree * tree -> tree • tree 사용하기 • leaf-val : tree ->  • is-leaf? : tree -> bool • left-subtree : tree -> tree • right-subtree : tree -> tree

  6. map over binary tree (define (map f tr) (if (is-leaf? tr) (leaf (f (leaf-val tr))) (node (map f (left-subtree tr)) (map f (right-subtree tr)) )) )

  7. fold over binary tree (define (accumulate op tr) (if (is-leaf? tr) (leaf-val tr) (op (accumulate op (left-subtree tr)) (accumulate op (right-subtree tr)) ) ) )

  8. boolean circuit data • boolean circuit 만들기 • one: circuit • zero: circuit • not : circuit -> circuit • and : circuit * circuit -> circuit • or : circuit * circuit -> circuit • boolean circuit 사용하기 • is-one? : circuit -> bool • is-zero? : circuit -> bool • is-not? : circuit -> bool • is-and? : circuit -> bool • is-or? : circuit -> bool • nth-circuit : circuit * nat -> circuit

  9. map over boolean circuit (define (map f circuit) (cond ((is-one? circuit) (f one)) ((is-zero? circuit) (f zero)) ((is-not? circuit) (not (map f (nth-child circuit 0)))) ((is-and? circuit) (and (map f (nth-child circuit 0)) (map f (nth-child circuit 1)))) ((is-or? circuit) (and (map f (nth-child circuit 0)) (map f (nth-child circuit 1)))) ) )

  10. fold over boolean circuit (define (eval c) (cond ((is-one? c) 1) ((is-zero? c) 0) ((is-not? c) (bool-not (eval (nth-circuit c 0)))) ((is-and? c) (bool-and (eval (nth-circuit c 0)) (eval (nth-circuit c 1)))) ((is-or? c) (bool-or (eval (nth-circuit c 0)) (eval (nth-circuit c 1)))) ) )

  11. cascading over list (define (sum-odd lst) (accumulate + 0 (filter odd? lst) ) ) (define (sum-odd-square lst) (accumulate + 0 (map square (filter odd? lst)) ) )

  12. cascading over tree (define (sum-odd-squares tr) (accumulate + 0 (map square (filter odd? (enlist-leaves tr) ) ) ) )

  13. symbolic expression data • 식 만들기 • const : int -> expr • var : string -> expr • sum : expr * expr -> expr • product : expr * expr -> expr • 식 사용하기 • is-const? : expr -> bool • is-var? : expr -> bool • is-sum? : expr -> bool • is-product? : expr -> bool • const-val: expr -> int • var-name: expr -> string • addend: expr * nat -> expr • augend: expr -> expr • multiplier: expr -> expr • multiplicand: expr -> expr

  14. example: symbolic differentiation (define (diff e x) (cond ((is-const? e) …) ((is-var? e) …) ((is-sum? e) …) ((is-product? e) ...) (else (error “diff expects expr”)) ) )

More Related