320 likes | 450 Views
DuDE : A D istributed Computing System u sing a D ecentralized P2P E nvironment. The 4th International Workshop on Architectures, Services and Applications for the Next Generation Internet (WASA-NGI-IV) Bonn , Germany , October 4th, 2011. J. Skodzik , P. Danielis, V. Altmann,
E N D
DuDE: A Distributed Computing System using aDecentralized P2P Environment The 4th International Workshop on Architectures, Services and Applications for the Next Generation Internet (WASA-NGI-IV) Bonn, Germany, October 4th, 2011 J. Skodzik, P. Danielis, V. Altmann, J. Rohrbeck, D. Timmermann • University of Rostock, Germany • Institute of Applied Microelectronics • and Computer Engineering T. Bahls, D. Duchow • Nokia Siemens Networks • Broadband Access Division • Greifswald, Germany
Outline • Introduction & Motivation • DuDE in General • The DuDE Algorithm in Detail • Test Scenario and Evaluation • Summary andFuture Work
Situation today Does an ANhaveenoughresources? Doesitprovidesufficientstatisticsat all? • Increasingnumberof Internet usersandtraffic data • Internet Service Providers (ISPs) wanttoensure: • Quality of Service (QoS) • The detectionofbottlenecks • The detectionofattacks • Howtoensuretheseissues? Statisticsgeneratedfromexisting log data
Introduction & Motivation Resources utilization CPU MEM 60% 60%
Introduction & Motivation Supported Not supported • Processorutilization • RAM utilization • Drops • Numberofpackets Short term statistics (STS)for singleANs Long termstatistics (LTS) Creationof global statistics Simultaneous computationof multiple statistics Processing ofincreasinglog datavolumes Simple supportofnewstatisticstypes
Introduction & Motivation One AN does not haveenoughhardwareressources Usageof multiple ANs tocomputestatistics Efficientresourcesharingwith high resilienceandscalability Utilizationof P2P technology DuDE: Exploitation of already available resources No extra costsfor additional equipment
DuDE in General Node2 ID Node3 ID Node1 ID Node4 ID Logical P2P ring
DuDE in General Log data (somehundredsof KBs) Data chunk (ca. 100 KBs) 8
DuDE in General • Objective: High log dataavailability = 99.999 % • Simple replicationwastesmemoryressources Reed-Solomon Codes • Split log dataofeach AN into m datachunks
DuDE in General • Objective: High log dataavailability = 99.999 % • Simple replicationwastesmemoryressources Reed-Solomon Codes • Split log dataofeach AN into m datachunks • Encoding: Add k interleavedcodingchunks n=m+kchunks
DuDE in General • Objective: High log dataavailability = 99.999 % • Simple replicationwastesmemoryressources Reed-Solomon Codes • Split log dataofeach AN into m datachunks • Encoding: Add k interleavedcodingchunks n=m+kchunks • Decoding: Restore log datafromany m of n chunks
DuDE in General Log data (somehundredsof KBs) Data chunk (ca. 100 KBs) Howtoapplyourapplicationto P2P?
DuDE in General Whichstepsarenecessarytocomputestatistics? Task Job Task Task Admin. Job = collectionof STS and/or LTS tasks Task = partofjob, e.g., requestfor „CPU“ statistics Jobscheduler (JS): Receptionandmonitoringofjob Taskwatcher (TW): Receptionandprocessingoftask
The DuDE Algorithm in Detail Stage 1: Resourcecollection 10% 60% 50% 30% 60% 50% 30% 10% Admin. …Job …Global statistics …Task …Log data
The DuDE Algorithm in Detail Stage 2: Jobscheduler determination 1. Resource collection Admin. …Job …Global statistics …Task …Log data
The DuDE Algorithm in Detail Stage 3: Resourcere-collection 2. Jobscheduler determination 1. Resource collection Admin. …Job …Global statistics …Task …Log data
The DuDE Algorithm in Detail Stage 4: Task assignment 3. Resource re-collection 2. Jobscheduler determination 1. Resource collection Request forProcessorutilization STS Request for RAM utilization LTS Request for Drops LTS Admin. …Job …Global statistics …Task …Log data
The DuDE Algorithm in Detail Stage 4: Task assignment 3. Resource re-collection 2. Jobscheduler determination 1. Resource collection Howto find all log datafor global statisticscomputation? Admin. …Job …Global statistics …Task …Log data
The DuDE Algorithm in Detail Global Peer Data Discovery Algorithm - Thresholdvalue A = 2 Node2 ID Node1 ID 1 yes 0 no Node1 Taskwatcher 2 yes 0 no Node2 3 yes 0 no Node3 4 no 1 no Node4 5 yes 0 no Node5 5 no 2 yes Node5 Algorithmisdone 6 no 1 no Node6 7 yes 2 yes Node7 Node3 ID Node5 Algorithmisdone Request for global statistics All dataneeded
The DuDE Algorithm in Detail Stage 5: Log datacollection 4. Task assignment 3. Resource re-collection 2. Jobscheduler determination 1. Resource collection Admin. …Job …Global statistics …Task …Log data
The DuDE Algorithm in Detail Stage 6: Statisticscomputation 4. Task assignment 3. Resource re-collection 2. Jobscheduler determination 1. Resource collection 5. Log data collection Processorutilization stat. RAM utilization stat. Drops stat. Admin. …Job …Global statistics …Task …Log data
The DuDE Algorithm in Detail Stage 7: Send resultsanddisplaythem 4. Task assignment 6. Statistics computation 3. Resource re-collection 2. Jobscheduler determination 1. Resource collection 5. Log data collection Admin. Admin. …Job …Global statistics …Task …Log data
The DuDE Algorithm in Detail Stage 7: Send resultsanddisplaythem 6. Compute statistics 4. Assigntasks 3. Resource recollection 2. Determinejob scheduler 1. Resource collection 5. Restore log data Admin. Admin. …Job …Global statistics …Task …Log data
Test Scenario and Evaluation PC Configuration Pentium 4 (1.5 GHz) 512 MB RAM Equivalent to AN HW
Test Scenario and Evaluation • Parameters: • Numberoftasksinsidejob • Numberoflog datasets in the P2P network • Computational loadforstatisticscomputation • Measurements: • Time forfinishing a job • Memory utilization
Test Scenario and Evaluation Linear IncreaseofNeeded Time Time is Constant
Test Scenario and Evaluation Linear IncreaseofNeeded Time Time isConstant
Test Scenario and Evaluation Linear Increaseof Memory Utilization Constant Memory Utilization
Test Scenario and Evaluation Memory utilizationincreasesmoreatthesingle AN thanatthetaskwatcher
Test Scenario and Evaluation Memory utilizationisconstantandindependentofthe computational load
Summary and Future work • P2P-based systemfordistributedcomputingof statistics • STS and LTS • Statisticsfor a single AN andthewholenetwork • Global Peer Data Discovery Algorithm • Successfullydeveloped prototype (demosession) • Investigation offurtherusecases
Thanks for your attention! Questions?