1 / 36

CS151 Complexity Theory

CS151 Complexity Theory. Lecture 12 May 6, 2004. Outline. The Polynomial-Time Hierarachy ( PH ) Complete problems for classes in PH , PSPACE BPP and the PH non-uniformity and the PH. The Polynomial-Time Hierarchy. Σ 0 = Π 0 = P Δ 1 =P P Σ 1 = NP Π 1 = coNP

shauna
Download Presentation

CS151 Complexity Theory

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS151Complexity Theory Lecture 12 May 6, 2004

  2. Outline • The Polynomial-Time Hierarachy (PH) • Complete problems for classes in PH, PSPACE • BPP and the PH • non-uniformity and the PH CS151 Lecture 12

  3. The Polynomial-Time Hierarchy Σ0= Π0 =P Δ1=PP Σ1=NPΠ1=coNP Δ2=PNP Σ2=NPNPΠ2=coNPNP Δi+1=PΣiΣi+i=NPΣiΠi+1=coNPΣi Polynomial HierarchyPH = iΣi CS151 Lecture 12

  4. The Polynomial-Time Hierarchy Σ0= Π0 = P Δi+1=PΣiΣi+i=NPΣiΠi+1=coNPΣi • Example: • MIN CIRCUIT: given Boolean circuit C, integer k; is there a circuit C’ of size at most k that computes the same function C does? • MIN CIRCUIT  Σ2 CS151 Lecture 12

  5. The Polynomial-Time Hierarchy Σ0= Π0 = P Δi+1=PΣiΣi+i=NPΣiΠi+1=coNPΣi • Example: • EXACT TSP: given a weighted graph G, and in integer k; is the k-th bit of the length of the shortest TSP tour in G a 1? • EXACT TSP  Δ2 CS151 Lecture 12

  6. The PH EXP PSPACE PSPACE: generalized geography, 2-person games… 3rd level: V-C dimension… 2nd level: MIN CIRCUIT, Succinct Set Cover, BPP… 1st level: SAT, UNSAT, factoring, etc… PH Σ3 Π3 Δ3 Σ2 Π2 Δ2 NP coNP P CS151 Lecture 12

  7. Useful characterization • Recall: L  NP iff expressible as L = { x |  y, |y| ≤ |x|k, (x, y)  R } where R  P. • Corollary: L  coNP iff expressible as L = { x |  y, |y| ≤ |x|k, (x, y)  R } where R  P. CS151 Lecture 12

  8. Useful characterization Theorem: L  Σi iff expressible as L = { x |  y, |y| ≤ |x|k, (x, y)  R } where R  Πi-1. • Corollary: L  Πi iff expressible as L = { x |  y, |y| ≤ |x|k, (x, y)  R } where R  Σi-1. CS151 Lecture 12

  9. Useful characterization • Proof of Theorem: • induction on i • base case on previous slide ( ) • we know Σi=NPΣi-1 = NPΠi-1 • guess y, ask oracle if (x, y)  R CS151 Lecture 12

  10. Useful characterization • Proof (continued): ( ) • given L  Σi = NPΣi-1decided by ONTM M running in time nk • try: R = { (x, y) : y describes valid path of M’s computation leading to qaccept } • but how to recognize valid computation path when it depends on result of oracle queries? CS151 Lecture 12

  11. Useful characterization • Proof (continued): • try: R = { (x, y) : y describes valid path of M’s computation leading to qaccept } • valid path = step-by-step description including correctyes/no answer for each A-oracle query zj (A  Σi-1) • verify “no” queries in Πi-1: e.g: z1 A  z3 A  …  z8 A • for each “yes” query zj:  wj, |wj| ≤ |zj|kwith (zj, wj)  R’ for some R’  Πi-2by induction. • for each “yes” query zj put wj in description of path y CS151 Lecture 12

  12. Useful characterization • Proof (continued): • single language R in Πi-1 : (x, y) R  all “no” zj A and all “yes” zj have (zj, wj)  R’ and y is a path leading to qaccept. • Note: AND of Πi-1 predicates is in Πi-1. CS151 Lecture 12

  13. Alternating quantifiers Nicer, more usable version: • LΣi iff expressible as L = { x | y1y2y3 …Qyi (x, y1,y2,…,yi)R } where Q=/ if i even/odd, and RP • LΠi iff expressible as L = { x | y1y2y3 …Qyi (x, y1,y2,…,yi)R } where Q= / if i even/odd, and RP CS151 Lecture 12

  14. Alternating quantifiers • Proof: • ( )induction on i • base case: true for Σ1=NP and Π1=coNP • consider LΣi: L = {x | y1 (x, y1)  R’ }, for R’  Πi-1 L = {x | y1y2y3 …Qyi (x, y1,y2,…,yi)R} • same argument for L Πi • ( ) exercise. CS151 Lecture 12

  15. Alternating quantifiers Pleasing viewpoint: “…” PSPACE const. # of alternations poly(n) alternations PH Δ3 Σ2 Π2 “” “” Σi Πi “…” “…” Δ2 Σ3 Π3 “” “” NP coNP “” “” P CS151 Lecture 12

  16. Complete problems • Recall: MIN CIRCUIT: given Boolean circuit C, integer k; is there a circuit C’ of size at most k that computes the same function C does? { (C, k) | C’ x (|C’| ≤ k and C’(x) = C(x)) } • Conclude: in Σ2 • (open whether it is complete for Σ2) CS151 Lecture 12

  17. Complete problems • three variants of SAT: • QSATi(i odd) = {3-CNFs φ(x1, x2, …, xi) for which x1x2x3 … xi φ(x1, x2, …, xi) = 1} • QSATi(i even) = {3-DNFs φ(x1, x2, …, xi) for which x1x2x3 … xi φ(x1, x2, …, xi) = 1 } • QSAT = {3-CNFs φ for which x1x2x3 … Qxn φ(x1, x2, …, xn) = 1} CS151 Lecture 12

  18. QSATi is Σi-complete Theorem: QSATi is Σi-complete. • Proof: (clearly in Σi) • assume i odd; given L  Σi in form { x | y1y2y3 … yi (x, y1,y2,…,yi)  R } …x… …y1… …y2… …y3… … …yi… C CVAL reduction for R 1 iff (x, y1,y2,…,yi)  R CS151 Lecture 12

  19. QSATi is Σi-complete …x… …y1… …y2… …y3… … …yi… • Problem set: can construct 3-CNF φfrom C: zφ(x,y1,…,yi,z) = 1  C(x,y1,…,yi) = 1 • we get: y1y2…yizφ(x,y1,…,yi,z) = 1 • y1y2…yiC(x,y1,…,yi) = 1 x  L C 1 iff (x, y1,y2,…,yi)  R CVAL reduction for R CS151 Lecture 12

  20. QSATi is Σi-complete • Proof (continued) • assume i even; given L  Σi in form { x | y1y2y3 … yi (x, y1,y2,…,yi)  R } …x… …y1… …y2… …y3… … …yi… C CVAL reduction for R 1 iff (x, y1,y2,…,yi)  R CS151 Lecture 12

  21. QSATi is Σi-complete …x… …y1… …y2… …y3… … …yi… • Problem set: can construct 3-DNF φfrom C: zφ(x,y1,…,yi,z) = 1  C(x,y1,…,yi) = 1 • we get: y1y2… yizφ(x,y1,y2,…,yi,z) = 1  y1y2…yiC(x,y1,y2,…,yi) = 1  x  L C 1 iff (x, y1,y2,…,yi)  R CVAL reduction for R CS151 Lecture 12

  22. QSAT is PSPACE-complete Theorem: QSAT is PSPACE-complete. • Proof: • in PSPACE: x1x2x3 … Qxn φ(x1, x2, …, xn)? • “x1”: for each x1, recursively solve x2x3 … Qxn φ(x1, x2, …, xn)? • if encounter “yes”, return “yes” • “x1”: for each x1, recursively solve x2x3 … Qxn φ(x1, x2, …, xn)? • if encounter “no”, return “no” • base case: evaluating a 3-CNF expression • poly(n) recursion depth • poly(n) bits of state at each level CS151 Lecture 12

  23. QSAT is PSPACE-complete • Proof (continued): • given TM M deciding L  PSPACE; input x • configuration graph has 2nknodes • recall: PATH(X, Y, i)  path from X to Y of length at most 2i • goal: 3-CNF φ(w1,w2,w3,…,wm) w1w2…Qwm φ(w1,…,wm) • PATH(START, ACCEPT, nk) CS151 Lecture 12

  24. QSAT is PSPACE-complete • for i = 0, 1, … nk produce quantified Boolean expressionsψi(A, B) w1w2… ψi(A, B, W)  PATH(A, B, i) • convert ψnkto 3-CNF φ • add variables V • hardwire START, ACCEPT w1w2… Vφ(W, V)  x  L CS151 Lecture 12

  25. QSAT is PSPACE-complete • Proof (continued): • ψo(A, B) = 1 iff • A = B or • A yields B in one step of M Boolean expression of size O(nk) … config. A STEP STEP STEP STEP config. B … CS151 Lecture 12

  26. QSAT is PSPACE-complete • recall Savitch’s algorithm: PATH(A, B, i+1)  Z[PATH(A, Z, i)  PATH(Z, B, i)] • cannot define ψi+1(A, B) to be Z [ψi(A, Z)  ψi(Z, B)] (why?) CS151 Lecture 12

  27. QSAT is PSPACE-complete • Proof (continued): • Key: reuse expressions just as Savitch reuses stack records… • define ψi+1(A, B) to be ZXY [((X=AY=Z)(X=ZY=B))  ψi(X, Y)] • ψi(X, Y) is preceded by quantifiers • move to front (they don’t involve X,Y,Z,A,B) CS151 Lecture 12

  28. QSAT is PSPACE-complete ψo(A, B) = 1 iff A = B or A yields B in 1 step ZXY [((X=AY=Z)(X=ZY=B))  ψi(X, Y)] • |ψ0| = O(nk) • |ψi+1| = O(nk) + |ψi| • total size of ψnk is O(nk)2 = poly(n) • logspace reduction CS151 Lecture 12

  29. PH collapse Theorem: if Σi = Πi then for all j > i Σj = Πj = Δj= Σi “the polynomial hierarchy collapses to the i-th level” • Proof: • sufficient to show Σi = Σi+1 • then Σi+1= Σi = Πi =Πi+1;apply theorem again CS151 Lecture 12

  30. PH collapse • recall: L  Σi+1 iff expressible as L = { x |  y (x, y)  R } where R  Πi • since Πi = Σi, R expressible as R = { (x,y) |  z((x, y), z) R’ } where R’  Πi-1 • together: L = { x |  (y,z) (x, (y,z))  R’} • conclude L  Σi CS151 Lecture 12

  31. Oracles vs. Algorithms A point to ponder: • given poly-time algorithm for SAT • can you solve MIN CIRCUIT efficiently? • what other problems? Entire complexity classes? • given SAT oracle • same input/output behavior • can you solve MIN CIRCUIT efficiently? CS151 Lecture 12

  32. Natural complete problems • We now have versions of SAT complete for levels in PH, PSPACE • Natural complete problems? • PSPACE: games • PH: almost all natural problems lie in the second level CS151 Lecture 12

  33. Natural complete problems • MIN CIRCUIT • good candidate, still open • MIN DNF: given DNF φ, integer k; is there a DNF φ’ of size at most k computing same function φ does? • example: x1x2x3 x1x2x3x4 CS151 Lecture 12

  34. Natural complete problems • MIN CIRCUIT • good candidate, still open • MIN DNF: given DNF φ, integer k; is there a DNF φ’ of size at most k computing same function φ does? • example: x1x2x3 x1x2x3 x4 x1x2 x4 CS151 Lecture 12

  35. Simpler version of MIN DNF Theorem (U): MIN DNF is Σ2-complete. • we’ll consider a simpler variant: • IRREDUNDANT: given DNF φ, integer k; is there a DNF φ’ consisting of at most k terms of φ computing same function φ does? CS151 Lecture 12

  36. Simpler version of MIN DNF • analogy with an NP-complete problem: • SET COVER: given subsets S1,S2,...,Sm U, integer k, is there a collection of at most k sets that cover U. φ-1(0) φ-1(1) U terms of φ sets Si {0,1}n CS151 Lecture 12

More Related