400 likes | 472 Views
Some Open Questions on the Borderline of Distributed Computing and Networking. Michael Schapira School of Computer Science and Engineering Hebrew University of Jerusalem. This Talk. New questions in Internet protocol design Self-stabilizing Internet protocols
E N D
Some Open Questions on the Borderline of Distributed Computing and Networking Michael Schapira School of Computer Science and Engineering Hebrew University of Jerusalem
This Talk • New questions in Internet protocol design • Self-stabilizing Internet protocols • Incentive-compatible network protocols • … illustrated via Internet routing examples
The Internet • Tremendous success • from research experiment to global infrastructure • Enables innovation in applications • Web, P2P, VoIP, social networks, virtual worlds • But, the Internet infrastructure fairly stagnant for decades…
Why Can’t We Innovate? • “Closed” equipment • software bundled with hardware • vendor-specific interfaces • Slow protocol standardization • Few people can innovate • equipment vendors write the code • long delays to introduce new features
Traditional Computer Networks data plane: packet streaming • Handle packets in “real time”: forward, filter, buffer, mark, rate-limit, measure, …
Traditional Computer Networks control plane: distributed algorithms • slower time scale: track topology changes, compute routes, install forwarding rules, …
Software Defined Networking (SDN):a New Paradigm Controller: logically-centralized control, smart, slow, implemented in software, … API to the data plane (e.g., OpenFlow) Switch: dumb, fast, implemented in hardware
Software Defined Networking (SDN):a New Paradigm Controller Application Network OS events from switches topology changes, traffic statistics, arriving packets, … commands to switches (un)install rules, query statistics, …
So… • Change is finally on the horizon • But many challenges remain… • Realizing SDN (e.g., distribute the controller?) • What are the “right” protocols (for routing, traffic engineering, etc.)? • Distributed computing theory can play an important role here
Distributed Controller? for scalability and reliability Controller Application Controller Application partition and replicate state Network OS Network OS Elect a leader? Distribute the computation? How to ensure consistency (across controllers / switches)? Where to place the controller(s)?
Rethinking (Routing) Protocols • Routing is a control planeoperation • slow (milliseconds – seconds) • Packet forwarding is a data plane operation • fast (microseconds) • Today’s (intradomain) routing • establishes connectivity • optimizes routes (= shortest paths) • failure ⇒ re-convergence ⇒ dropped packets!
Pushing Connectivity (Only!)to the Data Plane • … while retaining scalability • implemented in hardware • low overhead (end-to-end backup paths too costly…) • static forwarding tables (no changes in packet rates) • no change to packet header • When packet to a node d arrives at node i,i’s outgoing link is a function only of d i incoming link fid: EixP(Ei) -> Ei set of “live” outgoing edges
Resilient Forwarding • A “forwarding pattern” {fid}i is t-resilient if for any (at most) t-edge-failures the existence of a path between a node i and the destination d implies loop-free forwarding from i to d. • Perfect resilience ≣ t→∞ j x d i
Theoretical Perspective • Thm[Feigenbaum-Godfrey-Panda-S-Shenker-Singla]: 1-resilient forwarding pattern always exists • Thm[Feigenbaum-Godfrey-Panda-S-Shenker-Singla]: Perfect resilience is not achievable • Big gap! • does a 2-resilient forwarding pattern always exist? • specific families of graphs? • relax restrictions (randomness, dynamic forwarding tables, …)?
Practical Perspective A perfectly-resilient mechanism for achieving connectivity in the data plane • [“Data Driven Connectivity”, Liu-Panda-Singla-Godfrey-S-Shenker, NSDI 2013] • utilizes existing mechanisms • small (few bits) changes to forwarding tables at packet rate
Directions for Future Research • How to distribute the controller? • Data-plane/control-plane perspective on other networking tasks (e.g., traffic engineering) • Connectivity in the data plane
Border Gateway Protocol The Border Gateway Protocol (BGP) establishes routes between the (over 42,000) networks that make up the Internet AT&T Comcast Google Verizon
BGP ≠ Shortest-Path Routing! I want to avoid routes through Comcast if possible I won’t carry traffic between AT&T and Verizon AT&T Comcast Google Verizon I want a cheap route I want short routes
Illustration: BGP Dynamics Prefer routes through 1 Prefer routes through 2 2 1 1, my route is 2d 2, I’m available 1, I’m available d A stable state is reached
Illustration: BGP Oscillation Prefer routes through 2 Prefer routes through 1 BGP might oscillateindefinitely between 1d, 2d and 12d, 21d 2 1 2, my route is 1d 1, my route is 2d 1, 2, I’m the destination d Conjecture[Griffin-Wilfong, SIGCOMM 99]:2+ stable states → BGP can oscillate
Why are Oscillations Bad? • Make the network unpredictable and hard to debug. • Might lead to the flooding on the network with BGP update messages. • Deteriorate performance! • almost 50% of VoIP disruptions are due to BGP route fluctuations
Internet Protocols, Markets, and Beyond • Often, in computational and economic environments • the prescribed behavior for each “node” (human, machine) is simple and natural • nodes’ interaction is not synchronized • How can we reason about such environments? • Internet protocols (BGP routing, TCP congestion control) • large-scale markets • social networks • …
Dynamics:Game Theory vs. Distributed Computing • Game theory: • establishes convergence to equilibrium for “natural dynamics” (best-/better-response, fictitious play, no-regret, …) • … but typically assumes synchronization. • Distributed computing theory: • analyzes system behavior in asynchronous environments • … but no general notions of natural behavior.
Simple Model • nnodes 1,…,n • Node i has action spaceAi • A=A1•…•An • A-i=A1•…•Ai-1•Ai+1•…•An • Node i has reaction functionfi:A-i→Ai • f=(f1,…,fn) • fi can capture node i’s “best-responses”
Simple Model (Cont.) • Infinite sequence of discrete time steps t=1,… • A schedules:{1,…} →2[n]maps each time step to the subset of nodes “activated” at that time step • a fair schedule activates each node infinitely often • An initial action-profile and schedule naturally induce a dynamics.
Simple Model (Cont.) • Defn:An action-profile a*=(a1,…,an) is a stable stateif fi(a*)=ai for all i. • that is, a* is a fixed point of f • abusing notation… • Defn: A system is convergent if for every choice of initial action-profile and fair schedule the induced dynamics converge to a stable state.
Towards a Characterization of Convergent Systems • Thm [Jaggard-S-Wright]:If there exist multiple stable states, then the system is not convergent. • valency argument! • no failures, just dumb nodes! • So, a unique stable state is a necessary condition for guaranteed convergence. • Can be generalized to bounded-recall, non-stationary reaction functions.
Sprint AT&T Comcast Qwest Application: Internet Routing • BGP establishes routes between the smaller networks that make up the Internet • Question [Griffin-Shepherd-Wilfong, 2001]: Do multiple stable routing configurations imply the possibility of persistent route oscillations? • Answer [Sami-S-Zohar, 2009]: Yes!
Other Applications • Our “two people in a corridor” example… • Models of congestion control on the Internet • Load balancing • Diffusion of technologies in social networks • Asynchronous circuits • …
Strengthening the Result:Convergence vs. Synchronism • Defn: An r-fair schedule activates each node at least once in every r consecutive time steps • Defn: A system is r-convergentif for all choices of initial action-profile and r-fair schedule the induced dynamics converges to a stable state. • convergent r-convergent • not r-convergence not convergent • Thm [Erdmann-S]: If there exist multiple stable states, then the system is not (n-1)-convergent. • tight! • much more delicate valency argument
Complexity of Convergent Systems • Thm [Jaggard-S-Wright]: Determining if a system with n nodes is convergent requires exponential communication (in n). • Thm [Engelberg-Fabrikant-S-Wajc]: Determining if a succinctly described system is convergent is PSPACE-complete. • Both results extend also to “stochastic convergence”.
Directions for Future Research • Other protocols! • Identify specific classes of (stochastically) convergent gamesand measure convergence rate (e.g.,in terms of asynchronous rounds). • Characterize guaranteed convergence, and design algorithms for determining such convergence for • other game dynamics (e.g., fictitious play, no-regret dynamics) • other notions of equilibrium (e.g., mixed Nash, correlated) • other notions of asynchrony
TCP Congestion Control is NOT Incentive Compatible queue link router link AIMD = Additive Increase Multiplicative Decrease
What About BGP? • BGP was designed to guarantee connectivity between largely trusted and obedient parties. • In today’s commercial Internet ASesare owned by self-interested, often competing, entities • might not follow the “prescribed behaviour” • Simple examples show that BGP is, in fact, not incentive compatible • a node can obtain a better route by “lying”
How Can We Fix This? • Economic Mechanism Design: “the reverse-engineering approach to game-theory”. • Goal: Incentivize players to follow the prescribed behaviour • if others run the protocol so should I! • without money! • Thm[Levin-S-Zohar]: Secure variants of BGP are incentive compatible.
Conclusion • An exciting time to be in networking • Internet protocols motivate new research directions • Distributed computing theory has much to contribute