1 / 12

Solving Compound and Absolute Value Inequalities

Learn to solve compound inequalities with "and" or "or" statements. Understand graphing solutions and solving absolute value inequalities.

shawno
Download Presentation

Solving Compound and Absolute Value Inequalities

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Solving Compound and Absolute Value Inequalities Chapter 1 – Section 6

  2. Compound Inequalities • Compound Inequality – a pair of inequalities joined by and or or • Ex: -1 < x and x ≤ 3 which can be written as -1 < x ≤ 3 • x < -1 or x ≥ 3 • For and statements the value must satisfy both inequalities • For or statements the value must satisfy one of the inequalities

  3. And Inequalities • Graph the solution of 3x – 1 > -28 and 2x + 7 < 19. 3x > -27 and 2x < 12 x > -9 and x < 6

  4. And Inequalities b)Graph the solution of -8 < 3x + 1 <19 -9 < 3x < 18 -3 < x < 6

  5. Or Inequalities 3x < –12 –2x < 4 ALGEBRA 2 LESSON 1-4 Graph the solution of 3x + 9 < –3 or –2x + 1 < 5. 3x + 9 < –3 or –2x + 1 < 5 x < –4 or x > –2

  6. Try These Problems • Graph the solution of 2x > x + 6 and x – 7 < 2 • x > 6 and x < 9 • Graph the solution of x – 1 < 3 or x + 3 > 8 • x < 4 or x > 11

  7. Absolute Value Inequalities Let k represent a positive real number • │x │ ≥ k is equivalent to x ≤ -k or x ≥ k • │x │ ≤ k is equivalent to -k ≤ x ≤ k • Remember to isolate the absolute value before rewriting the problem with two inequalities

  8. 2x < 2 2x > 8 Solve for x. Solve |2x – 5| > 3. Graph the solution. |2x – 5| > 3 2x – 5 < –3 or 2x – 5 > 3 Rewrite as a compound inequality. x < 1 or x > 4

  9. Try This Problem Solve │2x - 3 │ > 7 2x – 3 > 7 or 2x – 3 < -7 2x > 10 or 2x < -4 x > 5 or x < -2

  10. < < < < < – – – – – > > > – – – –2|x + 1| + 5 –3 –2|x + 1| –8 Isolate the absolute value expression. Subtract 5 from each side. |x + 1| 4 Divide each side by –2 and reverse the inequality. –4 x + 1 4 Rewrite as a compound inequality. –5 x 3 Solve for x. Solve –2|x + 1| + 5 –3. Graph the solution.

  11. Try This Problem Solve |5z + 3| - 7 < 34. Graph the solution. |5z + 3| -7 < 34 |5z + 3| < 41 -41 < 5z + 3 < 41 -44 < 5z < 38 -44/5 < z < 38/5 -8 4/5 < z < 7 3/5

  12. Homework p. 44 #27 - 40

More Related