200 likes | 338 Views
Biogeochemistry from a Geostationary Ocean Color Sensor. Carlos E. Del Castillo Sam Yee Richard L. Miller 1 Karl Hibbitts The Johns Hopkins University Applied Physics Laboratory 1 East Carolina University. Suspended Sediments. 645nm 856 nm. Sediment Resuspension Pollution plumes
E N D
Biogeochemistry from a Geostationary Ocean Color Sensor Carlos E. Del Castillo Sam Yee Richard L. Miller1 Karl Hibbitts The Johns Hopkins University Applied Physics Laboratory 1East Carolina University
Suspended Sediments 645nm 856 nm
Sediment Resuspension • Pollution plumes • Water quality in beaches • Sediment transport • Models
The same analysis is possible for POC and PIC transport – easier with Hyper-GEO • Problems: • Need to use weekly and monthly composites. • Cannot resolve tidal cycles • CDOM retrievals • Atmospheric corrections • Photobleaching
CO2 + CO + LMWC CDOM + Light bugs CO2 + etc LMWC +O2 CO2 0.2 to 4 Pg C y-1 Global Photoproduction: CO 0.1 to 1 Pg C y-1 upwelling
HABS • Discrimination between HABS and non-HABS blooms • Monitoring of Blooms • Research • Models FERI SAMSON data from C. Davis and P. Bissett. Akashiwo sanguinea
LEO sensors cannot: • Resolve tidal influences • Diel winds • Coastal jets
South Atlantic Patagonia Tropical instability waves
Conclusions • Ideal for coastal • Not limited to coastal • Not limited to NA • Lunar calibrations • Vicarious calibration • Support of field work • Process studies • Special events • Support Models Earths view from -90o longitude Equatorial plane