170 likes | 249 Views
Nanoelectronics 11. Atsufumi Hirohata. Department of Electronics. 09:00 19/February/2014 Wednesday (G 013). Quick Review over the Last Lecture. Harmonic oscillator :. E. ( Allowed band ). ( Forbidden band ). ( Allowed band ). ( Forbidden band ). ( Allowed band ). k.
E N D
Nanoelectronics 11 Atsufumi Hirohata Department of Electronics 09:00 19/February/2014 Wednesday (G 013)
Quick Review over the Last Lecture Harmonic oscillator : E ( Allowed band ) ( Forbidden band ) ( Allowed band ) ( Forbidden band ) ( Allowed band ) k 0 1st 2nd 2nd ( Brillouin zone )
Contents of Nanoelectonics I. Introduction to Nanoelectronics (01) 01 Micro- or nano-electronics ? II. Electromagnetism (02 & 03) 02 Maxwell equations 03 Scholar and vector potentials III. Basics of quantum mechanics (04 ~ 06) 04 History of quantum mechanics 1 05 History of quantum mechanics 2 06 Schrödinger equation IV. Applications of quantum mechanics (07, 10, 11, 13 & 14) 07 Quantum well 10 Harmonic oscillator 11 Magnetic spin V. Nanodevices (08, 09, 12, 15 ~ 18) 08 Tunnelling nanodevices 09 Nanomeasurements
11 Magnetic spin • Origin of magnetism • Spin / orbital moment • Paramagnetism • Ferromagnetism • Antiferromagnetism
Origin of Magnetism Angular momentum L is defined with using momentum p : L z component is calculated to be In order to convert Lz into an operator, p 0 r p By changing into a polar coordinate system, Similarly, Therefore, In quantum mechanics, observation of state =R is written as
Origin of Magnetism (Cont'd) Lz L Thus, the eigenvalue for L2 is azimuthal quantum number (defines the magnitude of L) Similarly, for Lz, magnetic quantum number (defines the magnitude of Lz) For a simple electron rotation, Orientation of L : quantized In addition, principal quantum number : defines electron shells n = 1 (K), 2 (L), 3 (M), ... * S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, Oxford, 1997).
Orbital Moments Orbital motion of electron : generates magnetic moment B : Bohr magneton (1.16510-29 Wbm) * S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, Oxford, 1997).
Spin Moment and Magnetic Moment ml 2 l 1 2 0 -1 -2 E = h 1 0 1 -1 z H=0 H0 S Zeeman splitting : For H atom, energy levels are split under H dependent upon ml. Spin momentum : g=1 (J : orbital), 2 (J : spin) Summation of angular momenta : Russel-Saunders model J=L+S Magnetic moment : * S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, Oxford, 1997).
Exchange Energy and Magnetism ferromagnetism Exchange integral Jex antiferromagnetism Atom separation [Å] Exchange interaction between spins : Sj Si Eex : minimum for parallel / antiparallel configurations Jex : exchange integral Dipole moment arrangement : Paramagnetism Antiferromagnetism Ferromagnetism Ferrimagnetism * K. Ota, Fundamental Magnetic Engineering I (Kyoritsu, Tokyo, 1973).
Paramagnetism Applying a magnetic field H, potential energy of a magnetic moment with is m rotates to decrease U. Assuming the numbers of moments with is n and energy increase with +d is +dU, H Boltzmann distribution Sum of the moments along z direction is between -J and +J (MJ : z component of M) Here,
Paramagnetism (Cont'd) Now, Using Using
Paramagnetism (Cont'd) Therefore, BJ(a) : Brillouin function For a (H or T 0), Ferromagnetism For J 0, M 0 For J (classical model), L(a) : Langevin function * S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, Oxford, 1997).
Ferromagnetism Weiss molecular field : (w : molecular field coefficient, M : magnetisation) In paramagnetism theory, Substituting H with H+wM, and replacing a with x, Hm Spontaneous magnetisation at H=0 is obtained as Using M0 at T=0, For x<<1, Assuming T= satisfies the above equations, (TC) : Curie temperature * H. Ibach and H. Lüth, Solid-State Physics (Springer, Berlin, 2003).
Ferromagnetism (Cont'd) For x<<1, Therefore, susceptibility is (C : Curie constant) Curie-Weiss law ** S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, Oxford, 1997).
Spin Density of States * H. Ibach and H. Lüth, Solid-State Physics (Springer, Berlin, 2003).
Antiferromagnetism By applying the Weiss field onto independent A and B sites (for x<<1), A-site B-site Therefore, total magnetisation is Néel temperature (TN) * S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, Oxford, 1997).