920 likes | 941 Views
Explore the origins of voltage hysteresis in Li-ion batteries through electrochemistry, bulk calculations, surface reactivity, and efficiency analysis.
E N D
The Origins of Voltage Hysteresis in Li-Ion Batteries : Rémi KHATIB Marie-Liesse DOUBLET, Miran GABERŠČEK. Institut Charles Gerhardt – CNRS and Université Montpellier 2 (France) National Institute of Chemistry of Ljubljana (Slovenia) Remi.Khatib@univ-montp2.fr • www.energie-rs2e.com
OUTLINE • Introduction to Li-ion batteries • Electrochemistry of CoP • Bulk calculations, synthesis, characterization • New methodology surface and interface reactivity • Surface electrochemistry, Hysteresis • Conclusions / Perspectives
Li-ION BATTERIES • Secondary (rechargeable) electrochemical devices Positive High-potential vs. Li+/Li0 4 ≤ V < 5 volts REDUCTION Negative Low-potential vs. Li+/Li0 0 < V ≤ 1 volt OXIDATION
Li-ION BATTERIES • Secondary (rechargeable) electrochemical devices Positive High-potential vs. Li+/Li0 4 ≤ V < 5 volts OXIDATION Negative Low-potential vs. Li+/Li0 0 < V ≤ 1 volt REDUCTION
Li-ION BATTERIES • Secondary (rechargeable) electrochemical devices Positive High-potential vs. Li+/Li0 4 ≤ V < 5 volts OXIDATION Negative Low-potential vs. Li+/Li0 0 < V ≤ 1 volt REDUCTION Energy stored depends on: - Working voltage G : Gibbs energy - Specific capacity: amount of Li exchanged per mass/volume unit.
Li-ION BATTERIES How can we calculate a potential? A + nLi B
Li-ION BATTERIES How can we calculate a potential? A + nLi B Multi-phases reaction Single phase reaction
Li-ION BATTERIES How can we calculate a potential? A + nLi B Multi-phases reaction Single phase reaction
Li-ION BATTERIES How can we calculate a potential? A + nLi B Multi-phases reaction Single phase reaction
Li-ION BATTERIES How can we calculate a potential? A + nLi B V: independent of the state of charge or discharge
Li-ION BATTERIES How can we calculate a potential? A + nLi B DFT (+U) 1 – 4 eV 10-5eV 3kBT V: independent of the state of charge or discharge
Li-ION BATTERIES How can we calculate a potential? A + nLi B DFT (+U) 1 – 4 eV 10-5eV 3kBT V: independent of the state of charge or discharge
Li-ION BATTERIES How can we calculate a potential? A + nLi B DFT (+U) 1 – 4 eV 10-5eV 3kBT V: independent of the state of charge or discharge VASP code Basis : Plane waves Functional : GGA-PBE 3D Translation
Li-ION BATTERIES • Efficiency Energy provided by the battery Discharge
Li-ION BATTERIES • Efficiency Energy to provide to the battery Charge
Li-ION BATTERIES • Efficiency Energy lost DV
Li-ION BATTERIES • Efficiency Energy lost DV Origins of DV: Kinetic → Polarization Thermodynamic → Hysteresis
Li-ION BATTERIES Specific capacity 160 140 120 100 80 60 40 20 0 4.5 C 4.0 3.5 3.0 2.5 2.0 4.5 C/5 4.0 3.5 3.0 2.5 2.0 4.5 C/20 4.0 3.5 3.0 2.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 • Polarization = kinetic Masquelier C. et al., ECS Letters, 9, A352, 2006 Boyano I. et al., J. Power Sources, 195, 5351, 2010 Zhu Y. et al., J. Phys. Chem. C, 114, 2830, 2010
Li-ION BATTERIES Specific capacity 160 140 120 100 80 60 40 20 0 4.5 C 4.0 3.5 3.0 2.5 2.0 4.5 C/5 4.0 3.5 3.0 2.5 2.0 4.5 C/20 4.0 3.5 3.0 2.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 • Polarization = kinetic Masquelier C. et al., ECS Letters, 9, A352, 2006 Boyano I. et al., J. Power Sources, 195, 5351, 2010 Zhu Y. et al., J. Phys. Chem. C, 114, 2830, 2010
Li-ION BATTERIES Specific capacity 160 140 120 100 80 60 40 20 0 4.5 C 4.0 3.5 3.0 2.5 2.0 4.5 C/5 4.0 3.5 3.0 2.5 2.0 4.5 C/20 4.0 3.5 3.0 2.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 • Polarization = kinetic TROUVER UNE AUTRE IMAGE ET METTRE LA GITT AVANT. GITT Masquelier C. et al., ECS Letters, 9, A352, 2006 Boyano I. et al., J. Power Sources, 195, 5351, 2010 Zhu Y. et al., J. Phys. Chem. C, 114, 2830, 2010
Li-ION BATTERIES MX (X = H, P, N, S, O, F) DV (Volt) H P N S O F • Hysteresis = thermodynamic MX+ nLi LinX + M0 Covalent M-X Ionic M-X Conversion materials: CoO, FeP, FeP2, FeP4, MgH2, CuF2… Bruce et al.,Angew. Chem. Int. Ed., 47, 2930, 2008
CoP CHARACTERISTICS Li3P + Co0 CoP + 3Li Li3P Co0
CoP CHARACTERISTICS Li3P + Co0 CoP + 3Li Ceramic route Stoichiometric amount of Co0 and red P Inert atmosphere (Ar) Temperature slope: 20 oC.h-1 5 days at 700 oC Liquid N2 quenched 1 mm SEM S. Boyanovet al., Chem. Mater. 2006, 18, 3531-3538.
CoP CHARACTERISTICS Li3P + Co0 CoP + 3Li Ceramic route Stoichiometric amount of Co0 and red P Inert atmosphere (Ar) Temperature slope: 20 oC.h-1 5 days at 700 oC Liquid N2 quenched 1 mm SEM S. Boyanovet al., Chem. Mater. 2006, 18, 3531-3538.
CoP CHARACTERISTICS Li3P + Co0 CoP + 3Li Ceramic route Stoichiometric amount of Co0 and red P Inert atmosphere (Ar) Temperature slope: 20 oC.h-1 5 days at 700 oC Liquid N2 quenched 1 mm SEM S. Rundqvist, Acta Chem. Scand., 14(9), 1961, 1960
CoP CHARACTERISTICS Li3P + Co0 CoP + 3Li Ceramic route Stoichiometric amount of Co0 and red P Inert atmosphere (Ar) Temperature slope: 20 oC.h-1 5 days at 700 oC Liquid N2 quenched 1 mm SEM S. Rundqvist, Acta Chem. Scand., 14(9), 1961, 1960
CoP CHARACTERISTICS Li3P + Co0 CoP + 3Li Ceramic route Stoichiometric amount of Co0 and red P Inert atmosphere (Ar) Temperature slope: 20 oC.h-1 5 days at 700 oC Liquid N2 quenched 1 mm New peaks after ball-milling SEM S. Rundqvist, Acta Chem. Scand., 14(9), 1961, 1960
CoP CHARACTERISTICS Li3P + Co0 CoP + 3Li DFT CoP6octahedra edge-connected Paramagnetic at room temperature Ferromagnetic at very low temperature DFT+U E. Bekaertet al., J. Phys. Chem. C, 112(51):20481, 2008.
CoP CHARACTERISTICS Li3P + Co0 CoP + 3Li Knight shift Pauli paramagnetism 31P NMR CoP6octahedra edge-connected Paramagnetic at room temperature Ferromagnetic at very low temperature DFT+U NMR: Zeeman effect used to characterize magnetic properties of a nucleus. E. Bekaertet al., J. Phys. Chem. C, 112(51):20481, 2008.
CoP ELECTROCHEMISTRY How can we calculate a potential? A + nLi B DFT (+U) 1 – 4 eV Li3P Co0 CoP 10-5eV 3kBT V: independent of the state of charge or discharge
CoP ELECTROCHEMISTRY How can we calculate a potential? A + nLi B DFT (+U) 1 – 4 eV Li3P Co0 CoP 10-5eV 3kBT V: independent of the state of charge or discharge
T=0K BULK PHASE STABILITY DIAGRAM Li3P + Co0 CoP + 3Li ? Li3P Co0 CoP Boyanovet al., Chem. Mater., 18, 15, 2006 Boyanovet al., Chem. Mater., 21, 298, 2009
T=0K BULK PHASE STABILITY DIAGRAM Li3P + Co0 CoP + 3Li ? Li3P Co0 CoP Boyanovet al., Chem. Mater., 18, 15, 2006 Boyanovet al., Chem. Mater., 21, 298, 2009
T=0K BULK PHASE STABILITY DIAGRAM Li3P + Co0 CoP + 3Li ? Li3P Co0 CoP V3 V1 V2 3-steps Insertion / Conversion mechanism V1 (0.98 V): CoP + ½ Li Li½CoP V2 (0.70 V): Li½CoP + ½ Li LiCoP V3 (0.41 V): LiCoP + 2Li Li3P + Co0 Li0.5CoP LiCoP Boyanovet al., Chem. Mater., 18, 15, 2006 Boyanovet al., Chem. Mater., 21, 298, 2009
CoP ELECTROCHEMISTRY CoP + 3Li Li3P + Co0 ?
CoP ELECTROCHEMISTRY CoP + 3Li Li3P + Co0 ? C/n: 1Li exchanged per formula unit in n hours
CoP ELECTROCHEMISTRY CoP + 3Li Li3P + Co0 ?
CoP ELECTROCHEMISTRY CoP + 3Li Li3P + Co0 ?
CoP ELECTROCHEMISTRY CoP + 3Li Li3P + Co0 ? Charge Discharge
CoP ELECTROCHEMISTRY mm-sizedelectrode CoP + 3Li Li3P + Co0 ? 1 mm Electrode at the end of discharge: micro- or nano-scaled?
CoP ELECTROCHEMISTRY mm-sizedelectrode CoP + 3Li Li3P + Co0 ? Partially charged electrode: what is the composition of “LixCoP”? 1 mm Electrode at the end of discharge: micro- or nano-scaled?
CoP ELECTROCHEMISTRY mm-sizedelectrode CoP + 3Li Li3P + Co0 ? Partially charged electrode: what is the composition of “LixCoP”? 1 mm Electrode at the end of discharge: micro- or nano-scaled? • Techniques • SEM • XRD (in situ, semi in situ, ex situ) • Magnetometry (SQUID) • NMR (7Li, 31P) • EPR
”LixCoP” CHARACTERIZATION SEM Full discharged x=1 CoP 5 mm 5 mm 5 mm
”LixCoP” CHARACTERIZATION SEM In situ XRD Full discharged x=1 CoP • Similar results for others XRD • More material • No carbon • Longer acquisition time • CoP microsized reacts 5 mm 5 mm 5 mm
”LixCoP” CHARACTERIZATION mm-sizedelectrode CoP + 3Li Li3P + Co0 ? Partially charged electrode: what is the composition of “LixCoP”? 1 mm Electrode at the end of discharge: micro- or nano-scaled? • Techniques • SEM • XRD (in situ, semi in situ, ex situ) • Magnetometry (SQUID) • NMR (7Li, 31P) • EPR
”LixCoP” CHARACTERIZATION What do we expect for the end of the discharge? Co0 nanoparticles embedded into Li3P F Ferromagnetism NMR 2 Wickoff positions for Li d(7Li) = +0.4, +4.7 ppm 1 Wickoff positions for P d(31P) = -278 ppm SQUID magnetometer B. León et al., J. Electrochem. Soc., 153(10):A1829–A1834, 2006. S. Boyanovet al., Chem. Mat., 21(2):298–308, 2009.
”LixCoP” CHARACTERIZATION What do we expect for the end of the discharge? Co0 nanoparticles embedded into Li3P What do we expect for the end of the discharge? Co0 nanoparticles embedded into Li3P No coercitivity High MS F F Magnetization curve Evolution of the magnetization according to the field with a constant temperature Ferromagnetism SQUID magnetometer
”LixCoP” CHARACTERIZATION What do we expect for the end of the discharge? Co0 nanoparticles embedded into Li3P What do we expect for the end of the discharge? Co0 nanoparticles embedded into Li3P F F ZFC/FC curve Evolution of the magnetization according to the temperature with a constant field Magnetic order Ferromagnetism SQUID magnetometer
”LixCoP” CHARACTERIZATION What do we expect for the end of the discharge? Co0 nanoparticles embedded into Li3P What do we expect for the end of the discharge? Co0 nanoparticles embedded into Li3P No coercitivity High MS F F Magnetic order Ferromagnetism SQUID magnetometer Superparamagnetism: associated with nanoparticles of ferromagnetic compounds
”LixCoP” CHARACTERIZATION What do we expect for the end of the discharge? Co0 nanoparticles embedded into Li3P What do we expect for the end of the discharge? Co0 nanoparticles embedded into Li3P 7Li MAS-NMR NMR 2 Wickoff positions for Li d(7Li) = +0.4, +4.7 ppm 1 Wickoff positions for P d(31P) = -278 ppm 31P NMR B. León et al., J. Electrochem. Soc., 153(10):A1829–A1834, 2006. S. Boyanovet al., Chem. Mat., 21(2):298–308, 2009.