1 / 34

基因调控网络: - 数学模型与仿真

基因调控网络: - 数学模型与仿真. 马宏宾 系统所 2003.10.30. 纲要. 有向图 Bayesian 网络 Boolean 网络及推广 常微分方程 “定性”微分方程 偏微分方程 随机模型 基于规则的形式方法. 必要的说明 问题与背景 模型与仿真 总结与展望 参考文献. 必要的说明. 我完全不懂生物学; 我为什么要讲这个? 我讲的侧重点在哪?. 内容完全基于: 〔 童维上传 〕 Modeling and Simulation of Genetic Regulatory Systems: A Literature Review.

shoushan
Download Presentation

基因调控网络: - 数学模型与仿真

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 基因调控网络:-数学模型与仿真 马宏宾 系统所 2003.10.30

  2. 纲要 • 有向图 • Bayesian网络 • Boolean网络及推广 • 常微分方程 • “定性”微分方程 • 偏微分方程 • 随机模型 • 基于规则的形式方法 • 必要的说明 • 问题与背景 • 模型与仿真 • 总结与展望 • 参考文献

  3. 必要的说明 • 我完全不懂生物学; • 我为什么要讲这个? • 我讲的侧重点在哪? 内容完全基于:〔童维上传〕 Modeling and Simulation of Genetic Regulatory Systems: A Literature Review

  4. 问题与背景 • 什么是基因调控网络? • 细胞、DNA、蛋白质、基因、基因网络 • 为什么要研究基因调控网络? • 从分子水平认识细胞组织的功能。 • 基因调控网络与复杂性 • 了解基因调控网络,对我们有什么启发?

  5. 问题与背景 • 基因和蛋白质 • Genes code for proteins that are essential for development and functioning of organism: gene expression

  6. 问题与背景 • 基因表达的调控:〔不同层次〕 • Gene expression controlled by proteins produced by other genes: regulatory interactions

  7. 问题与背景 • 基因调控网络: • Genetic regulatory network consists of set of genes, proteins, small molecules, and their mutual regulatory interactions。 • Development and functioning of organisms cell emerges from interactions in genetic regulatory networks。

  8. 问题与背景 Choice between alternative developmental pathways controlled by network of genes, proteins, and mutual regulatory interactions。 • 例子:

  9. 问题与背景 • 基因调控网络的复杂性 • Large networks • Complex cells has many components that can interact in complex ways. • Dynamics processes are hard to understand by intuitive approaches alone. • Genetic regulatory networks have complicated interactions far beyond correlation of gene expression patterns. • Clustering cannot reveal causal connections between genes. • 为什么需要数学建模与仿真? • precise and unambiguous description of network of interactions • systematical derivation of behavioral predictions

  10. 问题与背景 • 目标--我们想知道: • Which genes are expressed?When and where in the organisms?To which extent? • Are there any universal laws? • Can we predict the evolution of the network? • How to predict the evolution of the network?

  11. 问题与背景 • 途径--实验、建模、仿真:

  12. 模型:有向图

  13. 模型:有向图

  14. 模型:Baysian network

  15. 模型:Baysian network

  16. 模型:Boolean network

  17. 模型:Boolean network

  18. 模型:Boolean network Truth tables State-transition diagram

  19. 模型:Generalized logical network

  20. 模型:Nonlinear ODE

  21. 模型:Nonlinear ODE • Negative feedback • Gene encodes a protein inhibiting its own expression • important for homeostasis, maintenance of system near a desired state • Steady state analysis • Transient behavior simulation

  22. 模型:Nonlinear ODE • Positive feedback • Gene encodes a protein activating its own expression. • important for differentiation, evolution towards one of two alternative states of system • Steady states • Transient behaviors

  23. 模型:Nonlinear ODE • Applications:

  24. 模型:Piecewise-linear ODE

  25. 模型:Qualitative Differential Equation • QDE: • Abstraction of the form • Qualitative valuex: • Qualitative function fi: • QSIM algorithmQualitative behaviors • Qualitative simulation

  26. 模型:Spatially Distributed Model • Configuration: • Discrete model: • Continuous model:boundary conditions:

  27. 模型:Stochastic Model

  28. 模型:Stochastic Model • Time evolution of p(X,t):master equation: • =>Stochastic simulation: use r.v. τand ρ

  29. 模型:Stochastic Model • Simulations: • Applications:

  30. 模型:Rule-based formalism • Knowledge base 〔Expert system?〕 • Facts: • Rules:

  31. 总结与展望

  32. 总结与展望 • Computer tools for modeling and simulation will be necessary to understand genetic regulatory processes • Variety of approaches available, representing genetic regulatory systems on different levels of abstraction • Choice of approach depends on aim of analysis and on available information: • knowledge on reaction mechanisms • quantitative data on model parameters and gene expression levels • Serious applications are beginning to emerge

  33. 参考文献 • Hidde De Jong, Modeling and Simulation of Genetic Regulatory Systems: A Literature Review, Journal Of Computational Biology, 9 (1), 2002. • Harley H. McAdams, Adam Arkin, Simulation Of Prokaryotic Genetic Circuits, Annu. Rev. Biophys. Biomol. Struct. 1998. 27:199–224. • Paul Smolen, Douglas A. Baxter And John H. Byrne, ModelingTranscriptional Control in Gene Networks—Methods, Recent Results, and Future Directions, Bulletin of Mathematical Biology (2000) 62, 247–292. • Christophe Roos, Facing Biological Complexity – From One Cell to a Multicellular Organism, Technology BIOINFORMATICS. • Eric Alm and Adam P Arkin, Biological networks, Current Opinion in Structural Biology, 2003, 13:193–202. • Olivier Cinquin, Jacques Demongeot, Positive and negative feedback: striking a balance between necessary antagonists, Journal of Theoretical Biology, 216(2), pp229-241 (2002)

  34. 谢谢大家!

More Related