400 likes | 501 Views
Review for Exam 2. Using MUXs to implement logic Using ROMs to implement logic Timing Analysis The internal structure of flip-flops Flip-flop timings Rising and falling edge triggered flip-flops Counters and state machines Generating next state equations from counter sequences.
E N D
Review for Exam 2 Using MUXs to implement logic Using ROMs to implement logic Timing Analysis The internal structure of flip-flops Flip-flop timings Rising and falling edge triggered flip-flops Counters and state machines Generating next state equations from counter sequences. Implementation using RS, D, T and JK flip-flops Reading state sequence from timing diagrams Determining next states from schematics Moore vs. Mealy Max frequency for a state machine Verilog code
0 forAB=00, Z=0 Implementing Logic Functions With Muxes Implement: Z = A’B + BC’ I0 I1 I2 I3 4-to-1 MUX Z A B
1 forAB=01, Z=1 Implementing Logic Functions With Muxes Implement: Z = A’B + BC’ I0 I1 I2 I3 0 4-to-1 MUX Z A B
C’ forAB=11, Z=C’ Implementing Logic Functions With Muxes Implement: Z = A’B + BC’ I0 I1 I2 I3 0 1 4-to-1 MUX Z A B
Implementing Logic Functions With Muxes Implement: Z = A’B + BC’ I0 I1 I2 I3 0 1 4-to-1 MUX Z 0 C’ A B
Implementing Logic Functions With Muxes An alternate method Z = A’B + BC’ Z = 1 0 + 0 C’ = 0 A=0 B=0 A=0 B=1 A=1 B=0 A=1 B=1 I0 I1 I2 I3 0 Z = 1 1 + 1 C’ = 1 1 4-to-1 MUX Z 0 Z = 0 0 + 0 C’ = 0 C’ Z = 0 1 + 1 C’ = C’ A B
Using a ROM For Logic Specify a truth table for a ROM which implements: F = AB + A’BC’ G = A’B’C + C’ H = AB’C’ + ABC’ + A’B’C
Using a ROM For Logic Specify a truth table for a ROM which implements: F = AB + A’BC’ G = A’B’C + C’ H = AB’C’ + ABC’ + A’B’C
Using a ROM For Logic Specify a truth table for a ROM which implements: F = AB + A’BC’ G = A’B’C + C’ H = AB’C’ + ABC’ + A’B’C
Using a ROM For Logic Specify a truth table for a ROM which implements: F = AB + A’BC’ G = A’B’C + C’ H = AB’C’ + ABC’ + A’B’C
D R D GR Q Q’ Q S Q’ Q Q’ GS GATE GATE CLK The internal structure of flip-flops D-type Flip-Flop
Q T Q’ CLK The internal structure of flip-flops T-type Flip-Flop
The internal structure of flip-flops J Q Q’ K CLK JK-type Flip-Flop
Flip-flop timingsClock-to-Q D Q Q’ CLK tCLK Q = tNOT + tAND + 2 x tNOR
Flip-flop timingsClock-to-Q CLK D Q tCLK Q time
Flip-flop timingsSetup time D Q Q’ CLK tsetup = tNOT + tAND + 2 x tNOR
Flip-flop timingsSetup time tsetup CLK D Q time
Flip-flop timingsHold time D Q Q’ thold = tNOT CLK
Flip-flop timingsHold time thold = tNOT Clock edge AND gate turns off, D can change CLK D Q time
Flip Flop Timing thold tsetup CLK D Q tCLK Q time
Rising and falling edge triggered flip-flops D Q Q’ CLK Falling Edge Triggered DFF
Rising Edge Triggered DFF Rising and falling edge triggered flip-flops D Q Q’ CLK
N2 = Q2 Q1’ + Q1’ Q0 N1 = Q2 N0 = Q2’ Q0’ + Q1 Q0’ Generating next state equations from counter sequences. Desired count sequence = 00 01 00 10 11 00 … If current state = 00, next state = ????? Implemented count sequence = 000 001 100 110 011 000 …
Reading state sequence from timing diagrams WXYZ = 0010, 0110, 0011, 0101, 1100, 1000, 1001, 1101, 1110, 0010
D Q D Q D Q Determining next states from schematics Q2 Q2 Q1 Q0 0 0 0 0 0 1 1 0 0 1 1 0 Q1’ Q2 Q1’ Initial state Q0 CLK Q1 Q2 CLK Q2’ Q0’ Q0 Q1 Q0’ CLK
Max frequency for a state machine Steps: 1. Determine the delay through the Flip Flops 2. Determine the delay through the IFL (max) 3. Add in setup time 4. Determine the smallest clock period possible 5. Max frequency = 1 ------------------ clock period
Structural Verilog Code and (output, input1, input2, ……); nand (output, input1, input2, ……); or (output, input1, input2, ……); nor (output, input1, input2, ……); not (output, input1); buf (output, input1); xor (output, input1, input2, ……); xnor (output, input1, input2, ……);
selbar a a1 sel q a2 b Structural Verilog Code example module mux21(q, sel, a, b); input sel, a, b; output q; wire selbar, a1, a2; not(selbar, sel); and(a1, selbar, a); and(a2, sel, b); or(q, a1, a2); endmodule
Dataflow Verilog Code example module mux21(q, sel, a, b); input sel, a, b; output q; assign q = (~sel & a) | (sel & b); endmodule OR module mux21(q, sel, a, b); input sel, a, b; output q; assign q = sel?b:a; endmodule
Verilog Code Heirarchy module mux41(q, sel, a, b, c, d); input[1:0] sel; input a, b, c, d; output q; wire tmp1, tmp2; mux21 M0(tmp1, sel[0], a, b); mux21 M1(tmp2, sel[0], c, d); mux21 M2(q, sel[1], tmp1, tmp2); endmodule a b c d mux41 sel 2 a b c d q sel[0] mux21 mux21 tmp1 tmp2 mux21 sel[1] q