1 / 10

Desain dan Analisis Algoritma

Desain dan Analisis Algoritma. Pertemuan 4 Asymptotic Notations. Big Oh. t(n) Є O(f(n)) Baca : OoG t(n) ada di O f(n) t(n) Є O(f(n)) jika OoG t(n) ≤ OoG f(n) Contoh 7n Є O(n 2 ), 100n + 5 Є O(n 2 ), 0.5n(n - 1) O(n 2 ). Big Oh.

sidone
Download Presentation

Desain dan Analisis Algoritma

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Desain dan Analisis Algoritma Pertemuan4 Asymptotic Notations

  2. Big Oh t(n) Є O(f(n)) • Baca : OoG t(n) ada di O f(n) • t(n) Є O(f(n)) jika OoG t(n) ≤ OoG f(n) • Contoh 7n Є O(n2), 100n + 5 Є O(n2), 0.5n(n - 1) O(n2)

  3. Big Oh Untuk membuktikan apakah t(n) Є O(f(n)) OoG t(n) ≤ OoG f(n) • Limit • Jika ada konstanta c dan integer positif no sedemikian hingga t(n) ≤ cf(n) untuk semua n ≥ no

  4. Big-O

  5. Big Oh • Buktikan bahwa 100n + 5 Є O(n2)

  6. Big Omega t(n) Є Ω(f(n)) • Baca : OoG t(n) ada di omega f(n) • t(n) Є Ω(f(n)) jika OoG t(n) ≥ OoG f(n) • Contoh, untuk algoritma polinom t(n) Є Ω(n) • Contoh 3n3Є Ω(n2), 0.5n(n - 1) Є Ω(n2)

  7. Big Omega Untuk membuktikan apakah t(n) Є Ω(f(n)) OoG t(n) ≥ OoG f(n) • Limit • Jika ada konstanta c dan integer positif no sedemikian hingga t(n) >= cf(n) untuk semua n ≥ no

  8. Big Omega • Buktikan bahwa n3Є Ω(n2)

  9. Big theta t(n) ЄӨ(f(n)) • Baca : OoG t(n) ada di Ө f(n) • t(n) ЄӨ(f(n)) jika OoG t(n) = OoG f(n) • Contoh 2n2 + log n ЄӨ(n2), 2n4 + 3n2ЄӨ(n4)

  10. Big theta Untuk membuktikan apakah t(n) ЄӨ(f(n)) OoG t(n) = OoG g(n) • Limit • Jika ada konstanta c1, c2 dan integer positif no sedemikian hingga c2g(n) ≤ t(n) ≤ c1g(n) untuk semua n ≥ no

More Related