1 / 45

Density functional study of magnetic solids Spin exchange interactions and magnetic properties

Density functional study of magnetic solids Spin exchange interactions and magnetic properties M.-H. Whangbo Deparetment of Chemistry North Carolina State University. NCSU: Yuemei Zhang Chuan Tian Jinhee Kang Dr. Changhoon Lee Dr. Erjun Kan Dr. Fang Wu

sierra
Download Presentation

Density functional study of magnetic solids Spin exchange interactions and magnetic properties

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Density functional study of magnetic solids Spin exchange interactions and magnetic properties M.-H. Whangbo Deparetment of Chemistry North Carolina State University

  2. NCSU: Yuemei Zhang Chuan Tian Jinhee Kang Dr. Changhoon Lee Dr. Erjun Kan Dr. Fang Wu FU: Prof. Hongjun Xiang UTK: Prof. Janice Musfeldt EWU: Prof. Jamie Manson ANL: Dr. John Schlueter KHU: Prof. Hyun-Joo Koo MPI-Stuttgart: Dr. Reinhard Kremer Prof. Jürgen Köhler DOE: $, NERSC NCSU: HPC

  3. Na3Cu2SbO6 F-AF vs. AF-AF chain? Ca3CoMnO6 Ising magnetism vs. JT distortion Sr3Fe2O5 Magnetic dipole-dipole & 3D order Cs2CuCl4 Cause for 2D spin lattice Bi4Cu3V2O14 Diamond chain? Cu3(CO3)2(OH)2 Diamond chain? YbAl3C3 Phase transition & spin gap [Cu(HF2)(pyz)2]BF4 Magnetoelastic interaction CuF2(H2O)2(pyz) Jahn-Teller axis switching under P

  4. Magnetic solids: Low-energy excitations Pair-wise spin exchange Spin exchange parameter Jij • Experiment: Fitting parameters, Unique? • Theory • Formal: Excitation spectrum in terms of J’s • Computational: Numerical values of J’s • Ordered spin states • DE (spin Ĥ): J’s  DE (electronic Ĥ): DFT+U calc.

  5. Na3Cu2SbO6 & Na2Cu2TeO6 Inorg. Chem. 47, 128 (2008) J1: Cu-O-Cu, F or AF? J2: Cu-O…O-Cu, AF J1-J2 chain F-AF or AF-AF chain?

  6. kBK Na3Cu2SbO6 Na2Cu2TeO6 Neutron scattering: spin wave dispersion F-AF model !

  7. Ca3CoMnO6: Ising magnetism vs. JT distortion Phys. Rev. B79, 054432 (2009) CoO6 TP : Co2+ (HS, d7) at high T MnO6 OCT: Mn4+ (HS, d3)  Collinear  : No inversion symmetry  ferroelectric polarization Ising magnetism?

  8. High spin Co2+ (d7, L = 2, S = 3/2) at TP (2, -2)  (x2-y2, xy) (1, -1)  (xz, yz) 0  z2 1 -1 -1 1 2 -2 2 -2 z-axis // the 3-fold rotational axis 0 0 Unevenly filled degenerate level Ising magnetism  J = 7/2, Jz = 7/2, DJz = 7 > 1

  9. Jahn-Teller (JT) instability: Unevenly filled degenerate level  JT distortion JT distortion  Removal of Ising magnetism?

  10. DFT+U+SOC calculations meV/ FU The  state undergoes a JT distortion.

  11. Ca3CoMnO6  Loss of the C3 symmetry JT distortion  state Partial quenching of µLby JT distortion

  12. Why  ? JNNN , strongly AFM meV t2g t2g

  13. Neutron diffraction at low T Low spin Co2+ (d7, L = 1, S = 1/2) at TP ? -1 1 Low spin? Low spin? Large? 1 -1 -1 1 2 -2 2 -2 2 -2 0 0 0 Ising magnetism: J = 3/2, Jz = 3/2, DJz = 3 > 1 DFT+U calc: High-spin << Low-spin !

  14. Spin orientation & 3D order Spin orientation, Local Collinear, Non-collinear Canting Weak, Any consequence?

  15. MDD interactions Cause for spin orientation & 3D magnetic order MDD  S2 Spin ice systems: Dy2Ti2O7  Dy3+ (f9) Ho2Ti2O7  Ho3+ (f10) Transition-metal analog?

  16. Sr3Fe2O5: MDD & 3D order? Fe2+ (S = 2, d6) Inorg. Chem. 48, 9051 (2009)       3D AFM structure (2a, 2b, c) supercell    

  17. kBK J1, J2, J5 (2a, 2b, c) //ab AFM slab Inter-slab  (J2, J4, J4), (J5, J4, J4) frustrated Monte Carlo  No 3D order TN 280 K !

  18. c y • z2 xz, yz • = 90 • Spin: a • //c or //b? b x          

  19. meV/ 8 FUs       b   c   SOC: Local interaction Cannot remove the inter-slab spin frustration MDD : Long-range interaction Removes the inter-slab spin frustration 3D AFM ordering

  20. Cs2CuCl4: Cause for 2D spi lattice Isolated (CuCl4)2- ions Inorg. Chem. 48, 4185 (2009) 4 3 2 c 1 b a 2D triangular antiferromagnet //bc: J2/J1 1/3

  21. kBK

  22. Spin dimers (CuCl4)2 J1 J2 J4 J3 Symmetrical Asymmetrical

  23. without Cs 6p with Cs 6p Selective participation of the Cs+ 6p orbitals

  24. Bi4Cu3V2O14: Diamond chain? Inorg. Chem. 47, 4779 (2008)

  25. meV Not a diamond chain An AFM chain made up of AFM trimers

  26. Azurite, Cu3(CO3)2(OH)2 Frustrated or unfrustrated diamond chain? J. Phys.:Condens. Matter, 21, 392201 (2009)

  27. Double peaks!

  28. J2, J1, J3 > 0: Frustrated diamond J2, J1 >0, J3 < 0: Unfrustrated diamond Double peaks in c vs T Neutron scattering Phys. Rev. Lett. 100, 117202 kBK

  29. J4 Jm

  30. kBK J1 J3: frustration within a diamond chain J2 dimer & (-J2-J4-)∞ chain  J2 dimer &(-J4-)∞ chain? -()- -()- -()- -()- -( )- -( )- -( )- -( )-

  31. g-factor anisotropy Hb: 2.02, 2.12 H//b: 1.86, 2.14

  32. (CuCl)LaNb2O7 CuCl4O2 octahedron: Axial elongation  CuCl2O2 square plane linear Cl-Cu-Cl linear O-Cu-O c O-Cu-O

  33. 2D net of the Cu2+ ions Projection view: CuCl2O2 square planes along the c-axis Zigzag chains : Cl-corner-sharing CuCl2O2 Axially-elongated CuCl4O2 octahedron Spin-dimer behavior: 3rd nearest-neighbor spin exchange

  34. Cu-Cl…Cl-Cu exchange interaction Spin-dimer behavior c Strong Negligible

  35. YbAl3C3 : phase transition & spin gap Yb3+ (f13), Al3+, C4- YbC6 octahedra CAl5 trigonal bipyramids

  36. T* = 77 K: Antiferroquadrupolar order? J. Phys. Soc. Jpn. 74, 2413 (2005) Spin gap, dimer-like LuAl3C3: Lu3+ (f14), Cp anomaly at 110 K! Phase transition at T*: structural in origin? J. Phys. Soc. Jpn. 76, 123703 (2007)

  37. Below T*: Orthorhombic (Pbca) J. Phys. Soc. Jpn. 77, 103601 (2008) Model 1 Model 2 a a Cooperative second-order Jahn-Teller distortion?

  38. eV/FU kBK 2 J2-J1 AFM chains, AFM coupled via J3  AFM-coupling of FM chains 1 Effect of magnetic field J. Phys. Soc. Jpn. 78, 014709 (2009) T*= 110 K at 30 T: Field  reduction of spin frustration AFM-coupling of FM chains?  27Al NMR line broadening below T*: More different Al-environments below T* 3 4

  39. [Cu(HF2)(pyz)2]BF4: Magnetoelastic interaction IR spectra under magnetic field Phys. Rev. Lett. 103, 157301 (2009) Out-of-plane pyz ring bend J/kB = 6.1 K DE = EAF - EF = 4J Out-of-plane pyz C-H bend

  40. AFM FM FM J  4t2/U How to reduce t? pyz: Out-of-plane bending Relaxed FM 4J 4J AFM How constant are J’s?

  41. Pressure-induced switching of the Jahn-Teller axis CuF2(H2O)2pyz (pyz = pyrazine) CuF2O2N2 octahedron Linear N-Cu-N O-Cu-O F-Cu-F Cu-Lax > Cu-Leq Cu-N > Cu-O > Cu-F JT-axis switching under pressure? a b c

  42. Phase II 1D AFM chain Phase I 2D AFM square lattice

  43. N-Cu-N  O-Cu-O  F-Cu-F Successive switching of the Jahn-Teller axis

More Related