1 / 8

Thanks to Dr. Waddill for the use of the diagram.

Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle .

signa
Download Presentation

Thanks to Dr. Waddill for the use of the diagram.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle . Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle . Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle . A´ I see three “parts” to the wire. A’ to A A A to C C´ C to C’ I  C R O As usual, break the problem up into simpler parts. Thanks to Dr. Waddill for the use of the diagram.

  2. Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle . Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle . Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle . A´ I ds For segment A’ to A: A C´  C R O

  3. Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle . Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle . Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle . A´ For segment C to C’: A ds C´ I  C R O

  4. The magnetic field due to wire segments A’A and CC’ is zero because ds is either parallel or antiparallel to along those paths. Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two straight segments and a circular arc of radius R that subtends angle . A´ Important technique, handy for homework and exams: ds A ds C´  C R O

  5. Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle . Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle . Example: calculate the magnetic field at point O due to the wire segment shown. The wire carries uniform current I, and consists of two radial straight segments and a circular arc of radius R that subtends angle . A´ For segment A to C: A ds C´ I  C R O

  6. A ds C´ I  C The integral of ds is just the arc length; just use that if you already know it. R O We still need to provide the direction of the magnetic field.

  7. Cross into . The direction is “into” the page, or . A ds C´ If we use the standard xyz axes, the direction is I  C R O y z x

  8. Along path AC, ds is perpendicular to . Important technique, handy for exams: A´ A ds C´ I  C R O

More Related