1 / 18

Redisposizione Genomica

Redisposizione Genomica. Gotzone Ortega Bioinformatica 2008/2009. INTRODUZIONE. Due genomi hanno gli stessi geni ma in diverso ordine  Sono diversi A {x, y, z} B {x, z, y} Ordinare uno dei genomi  Sono uguali A {x, y, z} B {x, y, z} Capire come i genomi hanno evoluto.

sileas
Download Presentation

Redisposizione Genomica

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Redisposizione Genomica Gotzone Ortega Bioinformatica 2008/2009

  2. INTRODUZIONE • Due genomi hanno gli stessi geni ma in diverso ordine  Sono diversi • A {x, y, z} • B {x, z, y} • Ordinare uno dei genomi  Sono uguali • A {x, y, z} • B {x, y, z} • Capire come i genomi hanno evoluto. • “We know, for example, that human and mouse have a common ancestor. If we can transform the genome of a mouse into the genome of a human, then somewhere in the process, we should form the genome of our common ancestor” Anne Bergeron.

  3. GENI, CROMOSOME e GENOMI • Gene: Si rappresenta con 2 estremi • Coda = Tail = estremo 3' = at • Testa = Head = estremo 5' = ah • Estremi adiacenti = adiacenze {ah, bt}, {ah, bh}, {at, bt}, {at, bh} • Estremi no adiacenti = telomeri {ah}, {at} • Cromosoma: Si rappresentano le adiacenze e i telomeri come vertici e si uniscono. Un cromosoma è un componente del grafo • Genoma: Il grafo

  4. GENI, CROMOSOME e GENOMI • Esempio: A={{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {ft}, {fh, gt}, {gh}} 7 geni = {a, b, c, d, e, f, g}

  5. VERTICI • Grado 1  {p} = esterno • Grado 2  {p, q} = interno

  6. COMPONENTI DEL GRAFO • Secondo il tipo di vertici • Circolare = Ciclo • Lineare = cammino • Secondo il numero di lati • Pari • Dispari

  7. OPERAZIONE “DCJ” • DCJ = “Double Cut and Join” “Doppio taglio e Unione” • Sopra 2 vertici di grado 1 o 2 • 3 modi: • (a) u={p, q}, v={r, s}  {p, r}, {s, q} | {p, s}, {q, r} • (b) u={p, q}, v={r}  {p, r}, {q} | {q, r}, {p} • (c) u={q}, v={r}  {q, r} *

  8. OPERAZIONI • Vertici in diversi cammini • Traslocazione • Identità • Fusione • Fisione • Vertici nello stesso cammino • Inversione • Escisione • Integrazione • Circolarizzazione • Linearizzacione • Vertici in cicli • Inversione • Fusione • Fisione

  9. VERTICI IN DIVERSI CAMMINI • Traslocazione • Identità • Fusione • Fisione

  10. VERTICI NELLO STESSO CAMMINO • Investimento • Scissione • Integrazione • Circolarizzazione • Linearizzazione

  11. VERTICI IN CICLI • Investimento • Fusione • Fisione

  12. DISTANZA DCJ • dDCJ (A, B) = Distanza DCJ tra A e B. Sequenza più corta di operazioni DCJ per trasformare A in B. Esempio: A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {ft}, {fh, gt}, {gh}} {{at}, {ah, bt}, {ch, dh}, {dt}, {bh, et}, {eh, ct}, {ft}, {fh, gt}, {gh}} {{et}, {ah, bt}, {ch, dh}, {dt}, {bh, at}, {eh, ct}, {ft}, {fh, gt}, {gh}} {{et}, {ah, bt}, {ch, dt}, {dh}, {bh, at}, {eh, ct}, {ft}, {fh, gt}, {gh}} {{et}, {ah, bt}, {ch, dt}, {dh}, {bh, at}, {eh}, {ct}, {ft}, {fh, gt}, {gh}} B = {{et}, {ah, bt}, {ch, dt}, {dh}, {bh, at}, {eh}, {ct}, {ft, gh}, {fh, gt}} -Distanza DCJ tra A e B è dDCJ(A,B) = 5

  13. GRAFO DI ADIACENZA • A = B ? • Se A<>B, trasformare A in B.

  14. GRAFO DI ADIACENZA • Esempio: A = {{at}, {ah, ct}, {ch, dh}, {dt}, {bh, et}, {eh, bt}, {ft}, {fh, gt}, {gh}} B = {{ah, bt}, {bh, at}, {ct}, {ch, dt}, {dh}, {et}, {eh}, {fh, gt} , {gh, ft}} Algoritmo 1 (Costruzione del grafo) 1: Creare un vertice por ogni adiacenza e ogni telomero in genomi A e B 2: for each adiacenzia {p, q} nel genoma Ado 3: creare un ramo collegando {p, q} con il vertice del genoma B in ciu si trova p 4: creare un ramo collegando {p, q} con il vertice del genoma B in cui si trova q 5: end for 6: for each telomero {p} del genoma Ado 7: creare un ramo collegando {p} con il vertice del genoma B in cui si trova p 8: end for

  15. A = B ? • A e B due genomi con lo stesso insieme di N geni. • A = B  N = C + I/2 (C = nº di cicli; I = nº di cammini dispari) C=1 I=2 7=1+2/2 C=5 I= 4 7=5+4/2

  16. TRASFORMARE A IN B Algoritmo 2 (Redisposizione) 1: for each adiacenza {p, q} nel genoma B do 2: c’è u, un elemento del genoma A dove si trova p 3: c’è v, un elemento del genoma A dove si trova q 4: ifu <> vthen 5: sostituire u e v in A per {p, q} y (u \ {p}) U (v \ {q}) 6: end if 7: end for 8: for each telomero {p} nel genoma Bdo 9: c’è u, un elemento del genoma A dove si trova p 10: ifu è una adiacenza then 11: sostituire u in A por {p} y (u \ {p}) 12: end if 13: end for

  17. TRASFORMARE A IN B • Esempio: Algoritmo 2 (Redisposizione) 1: for each adiacenza {p, q} nel genoma B do 2: c’è u, un elemento del genoma A dove si trova p 3: c’è v, un elemento del genoma A dove si trova q 4: ifu <> vthen 5: sostituire u e v in A per {p, q} y (u \ {p}) U (v \ {q}) 6: end if 7: end for 8: for each telomero {p} nel genoma Bdo 9: c’è u, un elemento del genoma A dove si trova p 10: ifu è una adiacenza then 11: sostituire u in A por {p} y (u \ {p}) 12: end if 13: end for

  18. TRASFORMARE A IN B • Esempio: Algoritmo 2 (Redisposizione) 1: for each adiacenza {p, q} nel genoma B do 2: c’è u, un elemento del genoma A dove si trova p 3: c’è v, un elemento del genoma A dove si trova q 4: ifu <> vthen 5: sostituire u e v in A per {p, q} y (u \ {p}) U (v \ {q}) 6: end if 7: end for 8: for each telomero {p} nel genoma Bdo 9: c’è u, un elemento del genoma A dove si trova p 10: ifu è una adiacenza then 11: sostituire u in A por {p} y (u \ {p}) 12: end if 13: end for

More Related