500 likes | 653 Views
Measurement of neutrino mass with cryogenic detectors. The birth of the neutrino. Neutrino oscillations => neutrino mass ≠ 0. <m n > from Cosmology. m = 0 eV. m = 1 eV. m = 7 eV. m = 4 eV. S <m n > <.4-.7 eV. Measurement (or limit ) on neutrino mass by single beta decay.
E N D
Measurement of neutrino mass with cryogenic detectors The birth of the neutrino Ettore Fiorini, Trento
Neutrino oscillations => neutrino mass ≠ 0 Ettore Fiorini, Trento
<mn> from Cosmology m = 0 eV m = 1 eV m = 7 eV m = 4 eV S<mn> <.4-.7 eV Ettore Fiorini, Trento
Measurement (or limit ) on neutrino mass by single beta decay Ettore Fiorini, Trento
Tiny effect -> Ettore Fiorini, Trento
Two different techniques are complementary due to different systematics KATRIN MARE Ettore Fiorini, Trento
Katrin 3H => 3He + e- + nemn< 2.2 eV=> KATRIN < .2 eV Ettore Fiorini, Trento
The cryogenic or thermal detectors Ettore Fiorini, Trento
Thermal sensor absorber crystal Incident particle Excellent resolution<1 eV~ 2eV @ 6 keV ~10 eV~keV@ 2 MeV Ettore Fiorini, Trento
First ideas 1880 => Langley => resistive bolometers for infrrared from SUN1905 => Curie et Laborde => calorimetric measurement of radioactivity 1927 => Ellis and Wuster => heat less then expected => the neutrino1935 => Simon => sensitivity enhanced by lowering the temperature1983 => T.Niinikoski =>observe pulses in resistors due to cosmic rays => McCammon et al (NASA-Wisconsin) Low temp. detectors for astrophysics and neutrino mass measurement1984 => Fiorini and Niinikoski Low temperature detectors for rare events Ettore Fiorini, Trento
The first mini-meeting on thermal detectors(Ringberg castle 1986) Ettore Fiorini, Trento
210Po a line Energyresolution of a TeO2 crystal of 5x5x5 cm3 (~ 760 g ) : 0.8 keV FWHM @ 46 keV 1.4 keV FWHM @ 0.351 MeV 2.1 keV FWHM @ 0.911 MeV 2.6 keV FWHM @ 2.615 MeV 3.2 keV FWHM @ 5.407 MeV (the best aspectrometer so far Ettore Fiorini, Trento
Non equilibrium detectors • STJ Superconducting tunnel junctions • SSG Superheated superconducting granules . The field does not enter more in the granule. Often SQUID pickup Suggested for In solar neutrino detection. Considered for Dark Matter Experiments => Superfluid 3He and 4He detectors (rotons) . Also considered for Solar neutrinos Comparison with conventional detectors: => Slow propagation of the vibration inside the absorber Kapitza resistence detector => heat sink (slow rise and decay times) => Possible localizazion of the event (TES) Ettore Fiorini, Trento
Possible “thermometers” SuperheatedSuperconductingGranules Ettore Fiorini, Trento
Microcalorimeters for 187Re ß-decay MIBETA: Kurie plotof 6.2 ×106 Re ß-decayevents (E > 700 eV) MANU2 (Genoa) metallic Rhenium m n< 26 eV Nucl. Phys. B (Proc.Suppl.) 91 (2001) 293 MIBETA (Milano) AgReO4 mn < 15 eV 10 crystals: 8751 hoursx mg (AgReO4) Nucl. Instr. Meth. 125 (2004) 125 MARE (Milano, Como, Genoa, Trento, US, D) Phase I : mn < 2.5 eV E0 = (2465.3 ± 0.5stat ± 1.6syst) eV m2n= (-112 ± 207 ± 90) eV2 hep-ex/0509038 Ettore Fiorini, Trento
A new fact in Material Science and Nuclear Physics => Beta Environmenthal Fine Structure 187 Re => 187 Os + e- + ˉneDE = 2.5 keV One can determine the P to S ratioin the decay Ettore Fiorini, Trento
MARE experiment Microcalorimeter Arrays for a Rhenium Experiment 187Re as ß-emitter: isotopic abundance 62.8% 5/2+→ 1/2-unique first forbidden transition Genova: metallic Re (MANU) Milano: AgReO4 (MIBETA) previous experiments: Ettore Fiorini, Trento dielectric AgReO4 crystal
Other interesting results in nuclear physics obtatined with cryogenic detctors e- + 163 Ho => 163 Os + ne also for searches on neutrino mass 113 Cd => 113 I + e- + ˉne t1/2 = (9+1) x 1015 y e- + 123 Te => 123 Sb + ne t1/2 > 1015 y e- + Ga => 71 Ge + ne => for solar neutrinos First discovery of the decay 209 Bi => 204 Tl + a e- + 7 Be => 7 Li + ne => for solar neutrinos Experiments with heavy ions Ettore Fiorini, Trento
What about the nature of the neutrino and its mass? Ettore Fiorini, Trento
Neutrinoless double beta decay and Majorana neutrinos : RIGHT : LEFT → → <==> Majorana =>1937 Ettore Fiorini, Trento
1. (A,Z) => (A,Z+2) + 2 e- + 2 ne¯2. (A,Z) => (A,Z+2) + 2 e- + c ( …2,3 c)3. (A,Z) => (A,Z+2) + 2 e- Ettore Fiorini, Trento
- - e - e u e d n W e u W n e d W d u d W - e u 2n - bb decay n n e e 0n - bb decay Neutrinoless bb decay Ettore Fiorini, Trento
e- e- Experimental approach Geochemical experiments82Se = > 82Kr, 96Zr = > 96Mo, 128Te = > 128Xe (non confirmed), 130Te = > 130TeRadiochemical experiments238U = > 238Pu (non confirmed) Direct ex-periments Source = detector (calorimetric) Sourcedetector Ettore Fiorini, Trento
Claim of Evidence for 0 in 76Ge Looks good to me…not to me (E.F.) <m> ~ 0.2 to 0.3 eV Single-site events in detectors 2, 3, 4, 5 (56.6 kg-y). H.V. Klapdor-Kleingrothaus, Int. J. Mod. Phys. E17, 505 (2008) Ettore Fiorini, Trento
2P1/2 650 nm 493 nm 4D3/2 metastable 47s 2S1/2 Experimental situation NEMO - SuperNEMO CUORICINO GERDA CUORE MOON MOON SNO++ EXO CUORE
Double beta decay with nucleqr emulsions Ettore Fiorini, Trento
Searches with thermal detectors CUORE R&D (Hall C) CUORE (Hall A) Cuoricino (Hall A) Ettore Fiorini, Trento
Mass increase of bolometers total mass [kg] year Ettore Fiorini, Trento
Search for the 2b|on in 130Te (Q=2529 keV) and other rare events At Hall A in the Laboratori Nazionali del Gran Sasso (LNGS) 18 crystals 3x3x6 cm3 + 44 crystals 5x5x5 cm3 = 40.7 kg of TeO2 Operation started in the beginning of 2003 => ~ 4 months Background .18±.01 c /kev/ kg/ a T 1/20n (130Te) > 3.1 x 1024 y <mn> .16 -.84 eV Klapdor 0.1 – 0.9 2modules, 9detector each, crystal dimension3x3x6 cm3 crystal mass330 g 9 x 2 x 0.33 = 5.94 kg of TeO2 11modules, 4detector each, crystal dimension5x5x5 cm3 crystal mass790 g 4 x 11 x 0.79 = 34.76 kg of TeO2 Ettore Fiorini, Trento
The present CUORICINOresult Ettore Fiorini, Trento
Present Cuoricino region Possible evidence (best value 0.39 eV) With the same matrix elements the Cuoricino limit is 0.53 eV “quasi” degeneracy m1 m2 m3 Inverse hierarchy m212= m2atm Direct hierarchy m212= m2sol Cosmological disfavoured region (WMAP) Ettore Fiorini, Trento
CUORE Ettore Fiorini, Trento
The CUORE collaboration Ettore Fiorini, Trento
Construction of CUORE 4 Ettore Fiorini, Trento
SICCAS/INFN Clean Room Ettore Fiorini, Trento
CUORE expected sensitivity disfavoured by cosmology In 5 years: Strumia A. and Vissani F. hep-ph/0503246 Ettore Fiorini, Trento
Other possible candidates for neutrinoless DBD 130Tehigh transition energy and34% di isotopic abundance Test of CUORE, with CUORICINO Ettore Fiorini, Trento
Scintillation + heat Ettore Fiorini, Trento
CONCLUSIONS Neutrino oscillations exist => Dm n 2≠ 0 Determination of the absolute value of <mn> becomes imperative Theory indicates <mn> from a from few to a few tens of meV. Single beta decay constraints directly <mn> but still far from predictions Future experiment on neutrinoless double beta decay could determine <mn > at the level predicted by neutrino oscillations under the inverse hierarchy hypothesis, and ascertain if neutrino is a Majorana particle The present claim for this phenomenon indicating <mn>~0.44 eVis not confirmed by CUORICINO The most advanced and sometime not yet tested nuclear physics techniques are being studied for future DBD experiment Determination of neutrino mass involves already nuclear and sub nuclear physics. Its peculiar multidisciplinarity involves fundamental problems in astroparticle physics, radioactivity’, materials, geochronology ecc. Very stimulating for young people Ettore Fiorini, Trento