1 / 7

2.8.1 对数 函数

2.8.1 对数 函数. ① ② ③. y=a x. (a>1). (0,1). Y=a x. (0<a<1). (0,1). 课前练习. 1. 复习指数函数的图象及性质 ? 2. 求下列函数的反函数 :. 2 .解: 1 )因为 y= 2 x ( y>0) y= 2 x 的反函数是 y=log 2 x (x>0)

Download Presentation

2.8.1 对数 函数

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2.8.1 对数函数

  2. ① ② ③ y=ax (a>1) (0,1) Y=ax (0<a<1) (0,1) 课前练习 1.复习指数函数的图象及性质? 2.求下列函数的反函数: 2.解:1)因为y= 2x ( y>0) y= 2x的反函数是y=log 2 x (x>0) 2)因为y=( 1/2 ) x y>0 所以x=log 1/2 y y=(1/2 )x的反函数是y=log 1/2 x (x>0) 3)因为y=a x (a>0且a=1) y>0 所以x=log a y y=ax的反函数是y=log a x 1.指数函数的图象:

  3. 一.对数函数的定义: 一般地,函数y=logax,(a>o且a=1)叫做对数函数.(0,+∞) 二.对数函数的图象和性质的应用: 练习 y x x o (1,0)

  4. 讲授新课2: 三.性质:

  5. 跟踪练习 1.求下列函数的定义域: 3.求下列函数的定义域: 5.比较下列各组数中两个数的大小:

  6. x=1 ( a>1) (1,0) 0 0 (1,0) (0< a<1) x=1 y =log x y =log x a a 课堂小结 1.正确理解对数函数的定义; 2.掌握对数函数的图象和性质; 3.能利用对数函数的性质解决有关问题. 4.搞清对数函数和指数函数的图象及性质的区别和联系: y=ax (0<a<1) (0,1) (0,1) y=ax (a>0) (0,1)

  7. 大关一中数学教研组 2006年10月 课件制作者:陈益美

More Related