1 / 30

Slava Kashcheyevs Avraham Schiller Amnon Aharony Ora Entin-Wohlman

Interference and correlations in two-level dots. Slava Kashcheyevs Avraham Schiller Amnon Aharony Ora Entin-Wohlman. Phys. Rev. B 75 , 115313 (2007). Also: Silvestrov & Imry, PRB 75 , 115335 (2007) Lee & Kim, PRL 98 , 186805 (2007). Conductance. gate voltage. Phase.

sinjin
Download Presentation

Slava Kashcheyevs Avraham Schiller Amnon Aharony Ora Entin-Wohlman

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Interference and correlations in two-level dots Slava Kashcheyevs Avraham Schiller Amnon AharonyOra Entin-Wohlman Phys. Rev. B 75, 115313 (2007) Also: Silvestrov & Imry, PRB 75, 115335 (2007) Lee & Kim, PRL 98, 186805 (2007)

  2. Conductance gate voltage Phase Motivation “Phase lapse” Avinun-Kalish et al.,Nature 436 (2005)Schuster et al., Nature 385 (1997)

  3. Destructive interference – several paths through the dot Non-interacting model gives either 0 or πphase change between the resonances ε1 U ε2 Motivation continued Explicit on-siteCoulomb interaction Entin-Wohlman, Hartzstein & Imry (1986)Silva, Oreg & Gefen (2002)Entin-Wohlman,Aharony,Levinson&Imry (2002) Interaction-based qualitative explanation of the phase lapse universality: Silvestrov & Imry PRL 85 (2000)

  4. ε1 ε2 Motivation continued • Non-monotonic level fillingand population inversion • Silvestrov & Imry (2000) [mechanism & PT] • König & Gefen PRB 71 (2005)[perturbation in tunneling] • Sindel, Silva, Oreg & von Delft PRB 72 (2005) [NRG & Hartree-Fock] • Transmission zeros and “phase lapses” • Silvestrov & Imry (2000) • Meden & Marquardt PRL (2006)[functional RG and NRG] • Golosov & Gefen PRB 74(2006)[Hartree-Fock (mean field)] • Karrasch,Hecht,Weichselbaum,Oreg, vonDelft & Meden PRL(2007) [NRG & fRG] • Orbital Kondo physics (“Correlation-induced” resonances) U • Two orbital levels • Two leads • On-site repulsion U • Spinless electrons

  5. Questions to answer • Non-monotonic level fillingand population inversion • Silvestrov & Imry (2000) [mechanism & PT] • König & Gefen PRB 71 (2005)[perturbation in tunneling] • Sindel, Silva, Oreg & von Delft PRB 72 (2005) [NRG & Hartree-Fock] • Transmission zeros and “phase lapses” • Silvestrov & Imry (2000) • Meden & Marquardt PRL (2006)[functional RG and NRG] • Golosov & Gefen PRB 74(2006)[Hartree-Fock (mean field)] • Karrasch,Hecht,Weichselbaum,Oreg, vonDelft & Meden PRL(2007) [NRG & fRG] • Orbital Kondo physics (“Correlation-induced” resonances) • Accurate methods… • either numrical only • or too narrow validity range • Hard to sample parameter space • symmetric (1-2 or L-R) cases are non-generic • Underlying energy scales • Role of many-body correlations • Unifying geometrical picture

  6. Outline Original spinless 2 levels x 2 leads Observablesn1, n2, t Exact mapping Inverse mapping, Friedel sum rule Equivalent Anderson model 1 spinful level x 1 ferromagnetic lead V↑ = V↓ Use exact solution(Bethe ansatz) Schrieffer-Wolff transformation U >> Γ Anisotropic Kondo model in a titled magneticfield Isotropic Kondo with a field

  7. ε0+h/2 U ε0–h/2 The model: notation • Two orbital levels • Two leads • Level spacing h • On-site Coulomb U • No symmetry imposed on aαi (wide band, D>>U)

  8. Singular value decomposition • Diagonalize the tunneling matrix: • Define new degrees of freedom • The pseudo-spin is conserved in tunneling!

  9. Singular value decomposition • Diagonalize the tunneling matrix: • Define new degrees of freedom • Rd, Rl are orthogonal matrices

  10. scalar spin vector in a tilted magnetic field Map onto Anderson two preferred directions!

  11. Outline Original spinless 2 levels x 2 leads Observablesn1, n2, t Exact mapping Inverse mapping, Friedel sum rule Equivalent Anderson model 1 spinful level x 1 ferromagnetic lead V↑ = V↓ Use exact solution(Bethe ansatz)

  12. “Standard” Anderson: In terms of original couplings: At T=0, an exact solution is possible for n1, n2 Numerical solution of Bethe ansatz equations fixed Solvable case: isotropic V one preferred direction Wiegman (1980); Okiji & Kawakami (1982)

  13. Local moment  single occupancy Polarization  charge localization Correlation-driven competition (see later) No phase lapse Γ=πρ|V|2 Γ U Exact results for isotropic AM n1n2 n1+n2 ≈ 1 |t|2 arg t Friedel-Langrethsum rule: Glazman & Raikh

  14. Outline Original spinless 2 levels x 2 leads Observablesn1, n2, t Exact mapping Inverse mapping, Friedel sum rule Equivalent Anderson model 1 spinful level x 1 ferromagnetic lead V↑ = V↓ Exact solution(Bethe ansatz) Schrieffer-Wolff transformation U >> Γ Anisotropic Kondo model in a titled magneticfield Isotropic Kondo in with a field

  15. Magnetic insights… • A quantum dot with ferromagnetic leads • V↑ ≠ V↓ generates additional local field • the physics: renormalization of level positions • We shall translate back to the charge problem: • Polarization in magnetic field competes with Kondo screening • 2D twist: the bare & the extra fields are not aligned => spin rotations effective Zeeman field Martinek et al., PRL91127203; 247202 (2003) Pasupathy et al., Science306, 86 (2004)

  16. Mapping onto a Kondo model • Schrieffer-Wolff in CB valley (U >>Γ, h) … • anisotropic exchange • effective field

  17. anisotropic exchange • effective field Mapping onto a Kondo model • Schrieffer-Wolff in CB valley (U >>Γ, h) … • Poor man’s scaling gives TK • Anisotropy is RG irrelevant • use results for isotropic Kondo model in

  18. generalized Glazman-Raikh phase shifts via sum rule Geometrical interpretation • Magnetization is determined by the field • Known function MK • Project onto original1-2 direction Bethe ansatz for isotropic Kondo modelby Andrei &Lowenstein (1980) Transmission L-R:

  19. 0.47 0.25 U/Γtot =3 0.08 0.16 An example Numbers from Fig.5 of PRL 96, 146801 (2006) θd=31º θl = 62º SVD angles reflect asymmetry in tunneling Γ↑ = 0.97 Γtot Γ↓ = 0.03 Γtot Changing gate voltage ε0 leads to effective field rotation!

  20. Small spacing : correlations h=0.01

  21. Population inversionSilvestrov & Imry (2000) “Correlation-induced resonances”Meden & Marquardt (2006) h=0.01  Phase lapse by πSilvestrov & Imry (2000) Small spacing : correlations htot TK θh M n1-n2 |t|2 h=0.01 ε0= – U/2 ε0

  22. Göres et al., PRB 62, 2188(2000) θl θd+90º Intermediate spacing: rotations htot θh M Fano resonances! n1-n2 |t|2 h=0.1 ε0= – U/2 ε0

  23. Relevant energy scales • Range of ε0-dependent component • Transversal projection of level spacing • Kondo correlation scale • Occupations numbers and transmission amplitudeare always* smooth • Generic, sharp π-jump of phase for • The population inversion and the phase lapse need not to coincide

  24. heff≈TK => M=1/4 fRG heff >TK heff >TK heff= 0 Compare to other methods • Both heffand TKdepend on ε0 but h = 0

  25. Summary and outlook • Results • Unified picture of both correlated and perturbative behavior • Accurate analytical estimates • Work in progress • many levels & statistics of phase lapses • Other issues • charge fluctuations (mixed valence)? • physical spin?

  26. Thanks! Kashcheyevs

  27. Only one combination couples to the dot Scattering of the coupled mode Langreth (1966) For , “unitarity limit” L R VR VL Glazman-Raikh as 2x1 SVD Glazman-Raikh rotation (1988)

  28. Example: h=0 (degenerate) htot TK θh M n1-n2 |t|2 ε0= – U/2 ε0

  29. ↑-↓ phase shift difference Conductance in isotropic case • For h || z, spin is conserved • Rotations imply • Friedel sum rule π/2 0

  30. here: Local moment Bethe results • An isotropic Kondo model in external field • Use exact Bethe ansatz • Key quantities • Return back

More Related