520 likes | 658 Views
Dimensión M étrica de G rafos. Antonio González Departamento de Matemática Aplicada I Universidad de Sevilla. 28 de noviembre de 2012. Seminario PHD del Instituto de Matemáticas d e la Universidad de Sevilla.
E N D
DimensiónMétrica de Grafos • Antonio González • Departamento de MatemáticaAplicada I • Universidad de Sevilla 28 de noviembre de 2012 Seminario PHD del Instituto de Matemáticas de la Universidad de Sevilla
Problem:Givenncoins, eachwithone of twodistinctweights, identifytheweight of every coin with theminimumnumber of weighings. n = 4 2 1 {2,3,4} {1,2,3} {3,4} 2 false coins 1 false coin 2 false coins 4 3 SOLUTION: METRIC DIMENSION OF THE HYPERCUBE!!!
Whatis a graph? G=(V,E) vertices edges order n = |V| y x 3 2 d(x,y)=3 4 degree
Whatis a graph? CycleCn Complete GraphKn PathPn Trees leaves
Resolving Sets and MetricDimension u3 u2 u1
Resolving Sets and MetricDimension u3 u2 u1
Resolving Sets and MetricDimension (3,2,1) u3 u2 u1
Resolving Sets and MetricDimension (3,2,1) u3 u2 u1
Resolving Sets and MetricDimension (3,1,2) (3,3,0) (3,2,1) u3 (3,0,3) (2,3,1) u2 (2,2,2) (1,3,2) (2,1,3) (1,2,3) u1 (0,3,3)
Resolving Sets and MetricDimension dim(G) = cardinality of a minimumresolving set (3,1) (3,3) (3,2) (3,0) (2,3) u2 (2,2) (1,3) (2,1) METRIC BASIS (1,2) u1 (0,3)
Resolving Sets and MetricDimension dim(G) = cardinality of a minimumresolving set dim(Cn) = 2 dim(Kn) = n-1 dim(Pn) = 1
Problem:Givenncoins, eachwithone of twodistinctweights, identifytheweight of every coin with theminimumnumber of weighings. Ø {1} {2} {3} {4} n = 4 Howto determine a possiblesituation X ? {1,2} {1,3} {1,4} {2,3} {2,4} {3,4} {1,3} {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2} X X {2,3,4} {1,2,3,4} ThisisthehypercubeQn!!! V(Qn) = Subsets of {1,2,3,…,n} E(Qn) = { {U,V} : |U ∆ V|= 1 } d( U , V ) = |U ∆ V| = |U| + |V| - 2|U ∩ V|
Problem:Givenncoins, eachwithone of twodistinctweights, identifytheweight of every coin with theminimumnumber of weighings. dim(Qn) + 1 n = 4 Howto determine a possiblesituation X ? Ø S resolving set of Qn {1} {2} {3} {4} S can determine X !!! {1,2} {1,3} {1,4} {1,3} {2,3} {2,4} {3,4} ? d(X,Si) forevery Si єS {1,2,3} {1,2,4} {1,3,4} {2,3,4} X X {1,2,3,4} {1,2,3,4} d(X,Si) = |X| + |Si| - 2|X ∩ Si| ThisisthehypercubeQn!!! V(Qn) = Subsets of {1,2,3,…,n} E(Qn) = { {U,V} : |U ∆ V|= 1 } d( U , V ) = |U ∆ V| = |U| + |V| - 2|U ∩ V|
Problem:Givenncoins, eachwithone of twodistinctweights, identifytheweight of every coin with theminimumnumber of weighings. dim(Qn) + 1 [Erdős,Rényi,1963] [Lindström,1964]
Problem:Givenncoins, eachwithone of twodistinctweights, identifytheweight of every coin with theminimumnumber of k-weighingsifwehaveexactlyk true coins. n = 5 k = 2 {1,2} dim(J(n,k)) {3,5} {3,4} {4,5} {1,5} {2,3} Thisisthe Johnson graph J(n,k) !!! {1,4} {2,4} {1,3} {2,5} V(J(n,k)) = k-subsets of {1,2,3,…,n} E(Qn) = { {U,V} : |U ∆ V|= 2 } d( U , V ) = ½| U ∆ V| = ½(|U| + |V| - 2|U ∩ V|)= k - |U ∩ V|
Problem:Givenncoins, eachwithone of twodistinctweights, identifytheweight of every coin with theminimumnumber of k-weighingsifwehaveexactlyk true coins. n = 5 k = 2 {1,2} dim(J(n,k)) {3,5} {3,4} {4,5} {1,5} {2,3} Thisisthe Johnson graph J(n,k) !!! {1,4} {2,4} {1,3} {2,5} V(J(n,k)) = k-subsets of {1,2,3,…,n} E(Qn) = { {U,V} : |U ∆ V|= 2 } d( U , V ) = ½| U ∆ V| = ½(|U| + |V| - 2|U ∩ V|)= k - |U ∩ V|
Problem:Givenncoins, eachwithone of twodistinctweights, identifytheweight of every coin with theminimumnumber of k-weighingsifwehaveexactlyk true coins. J(7,2) J(8,2) J(6,2) Can wefindanytooltoapproachthemetricdimension of thesegraphs? dim(J(n,k)) J(6,3) J(7,3) J(8,3) FINITE GEOMETRIES
FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk k+1 points in every line
FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk k+1 points in every line
FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk k+1 points in every line
FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk k+1 points in every line
FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk k+1 points in every line
FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk k+1 points in every line
FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk Affine planes of orderk k+1 points in every line k points in every line
FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk Affine planes of orderk k+1 points in every line k points in every line
FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk Affine planes of orderk k+1 points in every line k points in every line
FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk Affine planes of orderk k+1 points in every line k points in every line
FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk Affine planes of orderk k+1 points in every line k points in every line
FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk Affine planes of orderk k+1 points in every line k points in every line
FiniteGeometries A finitegeometry(P,L) is a finite set Pcalledpointstogetherwith a non-emptycollectionL of subsets of Pcalledlines. Projective planes of orderk Affine planes of orderk k+1 points in every line k points in every line
FiniteGeometries GiventwoverticesX,Yє V(J(n,k)), isthereany line Lє Ldistinguishingthem? Affine planes of orderk J(9,3) 1 4 3 2 5 Y X 6 Thereexistk+1distinctlinesthrougheverypoint!!! 8 9 7 k points in every line
FiniteGeometries GiventwoverticesX,Yє V(J(n,k)), isthereany line Lє Ldistinguishingthem? Affine planes of orderk J(9,3) 1 4 3 2 5 Y X 6 Thereexistk+1distinctlinesthrougheverypoint!!! 8 9 7 k points in every line
FiniteGeometries GiventwoverticesX,Yє V(J(n,k)), isthereany line Lє Ldistinguishingthem? Affine planes of orderk J(9,3) 1 d(L,Y) ≠ d(L,X) 4 3 2 5 Y X 6 Thereexistk+1distinctlinesthrougheverypoint!!! 8 9 7 k points in every line
FiniteGeometries GiventwoverticesX,Yє V(J(n,k)), isthereany line Lє Ldistinguishingthem? Affine planes of orderk J(9,3) 1 ≠ d(L,Y) ≠ d(L,X) 4 3 2 5 Y X 6 Thereexistk+1distinctlinesthrougheverypoint!!! 8 9 7 k points in every line
FiniteGeometries GiventwoverticesX,Yє V(J(n,k)), isthereany line Lє Ldistinguishingthem? [Cáceres,Garijo,G.,Márquez,Puertas,2011] Proposition: Ifk ≥ 3 is a prime power, then dim(J(k2,k)) ≤ k2 + k and dim(J(k2+k+1,k+1)) ≤ k2 + k+1. Affine planes of orderk J(9,3) Proposition: Ifn≥ 3, then dim(J(n,2))= 1 ≠ d(L,Y) ≠d(L,X) 4 3 2 5 Y X 6 Thereexistk+1distinctlinesthrougheverypoint!!! 8 9 7 k points in every line
Whatelse? Steiner systems Toroidalgrids Partialgeometries
Thenumber of resolving sets of a graph dim = 2 dim = 5 # bases = 1 # bases = 6
Graphswith “many” metric bases Open Problem [Chartrand,Zhang,2000]: CharacterizethegraphsGsuchthateverysubset of sizedim(G) is a basis. dim ≤ 2 [Chartrand,Zhang,2000] Complete graphs and oddcycles. dim > 2 [Garijo,G.,Márquez,2011] Complete graphs. K2 K1 C3 C5
UpperDimension and ResolvingNumber dim+(G)= maximumsize of a minimalresolving set res(G)= minimumksuchthateveryk-subsetis a resolving set. (1,1,2,2,3) UPPER BASIS dim(G) ≤ dim+(G) ≤ res(G) (1,1,2,2,3) Realizability ??? dim+(G) = 4 res(G) = 6
Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = a c dim(Kn)=n-1 res(Kn)=n-1
Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = = b a c
Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = b a Theorem: Conjecture:Foreverypaira,bof integerswith 2≤a≤b, thereexists a conectedgraphG suchthatdim(G)=a and dim+(G)=b. Itis true!!! [Garijo,G.,Márquez,2011]
Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = b a Howmany???
Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = b a Howmany???
Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = b a Howmany???
Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = b a Howmany???
Realizability [Chartrand et al.,2000] dim(G) ≤ dim+(G) ≤ res(G) = = = b a c Theorem:[Garijo,G.,Márquez] Given c>3, the set of graphswithresolvingnumbercisfinite. Howmany??? QUESTION (1): Realization of triples (a,b,c). QUESTION (2): RECONSTRUCTION!!!
Reconstruction Problem: givenc > 0, which are thegraphsG suchthat res(G) = c? res ≤ 2 [Chartrand,Zhang,2000] Paths and oddcycles.
Reconstruction Problem: givenc > 0, which are thegraphsG suchthat res(G) = c? res ≤ 2 [Chartrand,Zhang,2000] Paths and oddcycles. res = 3 [Garijo,G.,Márquez,2011] Evencycles plus other 18 graphs.