1 / 18

Generalized Differential Semblance Optimization

Generalized Differential Semblance Optimization. Sanzong Zhang and Gerard Schuster King Abdullah University of Science and Technology. Motivation. Problem: DSO sometimes has trouble achieving sufficient resolution. Differential Semblance Inversion. 0. 0. Z (km). Z (km). Marmousi. 6.

skah
Download Presentation

Generalized Differential Semblance Optimization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Generalized Differential Semblance Optimization Sanzong Zhang and Gerard Schuster King Abdullah University of Science and Technology

  2. Motivation Problem: DSO sometimes has trouble achieving sufficient resolution Differential Semblance Inversion 0 0 Z (km) Z (km) Marmousi 6 6 X (km) X (km) 18 18 0 0 Solution: Generalized DSO = Subsurface Offset Inversion+DSO Generalized Differential Semblance Inversion Marmousi

  3. Outline Motivation Traveltime+waveform Inversion Generalized DSO Inversion 2 2 ε = ½∑[DdDt] ε = ½∑[DmDh] Numerical Tests Summary

  4. d(x,t) km/s 2.3 1.8 1.5 1.2 Wave Eq. Traveltime+Waveform Inversion (Zhou et al., 1995; Luo+GTS, 1991) t x d(x,t) Time Dtx 2 2 + ½∑[DtDd] ε = ½∑[wxDtx] x,t x Traveltime Waveform 2 2 e=½∑[DtxDd] e=½∑[DhDm] a WTW Misfit (1-a) a= 0 traveltimetomo. a= 1 FWI Low wavenumber High wavenumber 0 m 305 m Courtesy Ge Zhan 0 m 0 m 183 183

  5. MVA, DSO General Differential Semblance Optimization (Stork, 1992; Symes & Kern, 1994; Sava & Biondi, 2004 ; Almomim, 2011; Zhang et al, 2012) Sub. offset CIG d(x,t) Time Dtx 2 2 2 + ½∑[DmDh] ε = ½∑[ Dh] ε = ½∑[DmDh] Migration z,Dh z Z Z Dm -Dh -Dh +Dh +Dh DSO a Subsurface Offset (1-a) Dh Dm Objective Functions ∂(DmDh) 2 ∂Dh ∑[ DmDh 2 g(x) ∂c(x) ∂c(x) Low wavenumber Intermediate wavenumber Weight with amplitude Dm Weight with offset Dh 2 ∂Dm +DmDh ] ∂c(x) x,Dh General DSO Objective Function ½ Low wavenumber Intermediate wavenumber z,Dh = ∑ z,Dh General DSO Gradient g(x) =

  6. MVA, DSO General Differential Semblance Optimization (Stork, 1992; Symes & Kern, 1994; Sava & Biondi, 2004 ; Almomim, 2011; Zhang et al, 2012) Sub. offset CIG d(x,t) Time Dtx General DSO Inversion DSOInversion 0 0 2 2 + ½∑[DmDh] ε = ½∑[ Dh] Migration z,Dh z Z Z Dm Z (km) Z (km) -Dh -Dh +Dh +Dh DSO a Subsurface Offset (1-a) 6 6 X (km) X (km) 18 18 0 0 Dh Dm Objective Functions Low wavenumber Intermediate wavenumber

  7. Outline Motivation Traveltime+waveform Inversion Generalized DSO Inversion 2 2 ε = ½∑[DdDt] ε = ½∑[DmDh] Numerical Tests Summary

  8. Numerical Examples (a) True velocity model 0 Z (km) • 15 Hz Ricker wavelet • 242 shots , 70 m spacing • 700 receivers, 20 m spacing 6 0 18 X (km) (b) CSG 0 t (s) 10 14 X (km) 0

  9. 4.5 1 Numerical Examples Inverted model (Gen. DSO) Inverted model (DSO) Initial velocity model True velocity model 0 0 0 0 Z (km) Z (km) Z (km) Z (km) 6 6 6 6 X (km) X (km) 18 18 0 0 18 18 0 0 X (km) X (km)

  10. 4.5 1 Result Comparison Inverted model (Shen et al., 2001) Inverted model (DSO) Initial velocity model Initial velocity model 0 0 0 0 4 Z (km) Z (km) Z (km) Z (km) 6 3 3 6 X (km) 18 0 18 0 0 X (km) X (km) X (km) 0 9 9 2

  11. 2 2 b½∑[Dd] ε = a½∑[DmDh] + Numerical Examples LSM LSM General DSO RTM image (General DSO) RTM image (DSO) 0 0 Z (km) Z (km) 6 6 0 0 X (km) X (km) 18 18

  12. 2 2 b½∑[Dd] ε = a½∑[DmDh] + LSM LSM General DSO LSRTM image (General DSO) RTM image (General DSO) 0 0 Z (km) Z (km) 6 6 0 0 X (km) X (km) 18 18

  13. Numerical Examples Angle gathers (Gen. DSO) Gatthers) Angle gathers (DSO) 0 0 Z (km) Z (km) 6 6 0 0 X (km) X (km) 18 18

  14. Outline Motivation Traveltime+waveform Inversion Generalized DSO Inversion 2 2 ε = ½∑[DdDt] ε = ½∑[DmDh] Numerical Tests Summary

  15. Summary • Low+Intermediate Inversion = General DSO Inversion • Marmousi tests: DSO vs General DSO • Extension: Low+Int.+High wavenumber General DSO 2 ε = ½∑[DmDh] 2 2 b½∑[Dd] ε = a½∑[DmDh] + LSM General DSO

  16. Summary • Limitations • 1. No coherent events in CIGs, then unsuccessful • 2. Expensive • 3. Infancy, still learning how to walk • 4. Low+intermediate wavenumber unless LSM or FWI

  17. Thanks Sponsors of the CSIM (csim.kaust.edu.sa) consortium at KAUST & KAUST HPC

More Related