1 / 8

6.6 Finding Rational Zeros pg. 359!

6.6 Finding Rational Zeros pg. 359!. What is the rational zero theorem? What information does it give you?. The rational zero theorem. …. If f (x)=a n x + +a 1 x+a 0 has integer coefficients, then every rational zero of f has the following form: p factor of constant term a 0

Download Presentation

6.6 Finding Rational Zeros pg. 359!

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 6.6 Finding Rational Zerospg. 359! What is the rational zero theorem? What information does it give you?

  2. The rational zero theorem … • If f(x)=anx + +a1x+a0 has integer coefficients, then every rational zero of f has the following form: pfactor of constant term a0 q factor of leading coefficient an n =

  3. Example 1: • Find rational zeros of f(x)=x3+2x2-11x-12 • List possible LC=1 CT=-12 X= ±1/1,± 2/1, ± 3/1, ± 4/1, ± 6/1, ±12/1 • Test: 1 2 -11 -12 1 2 -11 -12 X=1 1 3 -8 x=-1 -1 -1 12 1 3 -8 -20 1 1 -12 0 • Since -1 is a zero: (x+1)(x2+x-12)=f(x) Factor: (x+1)(x-3)(x+4)=0 x=-1 x=3 x=-4

  4. Extra Example 1: • Find rational zeros of: f(x)=x3-4x2-11x+30 • LC=1 CT=30 x= ±1/1, ± 2/1, ±3/1, ±5/1, ±6/1, ±10/1, ±15/1, ±30/1 • Test: 1 -4 -11 30 1 -4 -11 30 x=1 1 -3 -14 x=-1 -1 5 6 1 -3 -14 16 1 -5 -6 36 X=2 1 -4 -11 30 (x-2)(x2-2x-15)=0 2 -4 -30 (x-2)(x+3)(x-5)=0 1 -2 -15 0 x=2 x=-3 x=5

  5. Example 2: • f(x)=10x4-3x3-29x2+5x+12 • List: LC=10 CT=12 x= ± 1/1, ± 2/1, ± 3/1, ± 4/1, ± 6/1, ±12/1, ± 3/2, ± 1/5, ± 2/5, ± 3/5, ± 6/5, ± 12/5, ± 1/10, ± 3/10, ± 12/10 • w/ so many –sketch graph on calculator and find reasonable solutions: x= -3/2, -3/5, 4/5, 3/2 Check: 10 -3 -29 5 12 x= -3/2 -15 27 3 -12 10 -18 -2 8 0 Yes it works * (x+3/2)(10x3-18x2-2x+8)* (x+3/2)(2)(5x3-9x2-x+4) -factor out GCF (2x+3)(5x3-9x2-x+4) -multiply 1st factor by 2 ____ __

  6. Repeat finding zeros for: • g(x)=5x3-9x2-x+4 • LC=5 CT=4 x:±1, ±2, ±4, ±1/5, ±2/5, ±4/5 *The graph of original shows 4/5 may be: 5 -9 -1 4 x=4/5 4 -4 -4 5 -5 -5 0 (2x+3)(x-4/5)(5x2-5x-5)= (2x+3)(x-4/5)(5)(x2-x-1)= mult.2nd factor by 5 (2x+3)(5x-4)(x2-x-1)= -now use quad for last- *-3/2, 4/5, 1± ,1- . 2 2 ____ __

  7. What is the rational zero theorem? If f(x)=anx + +a1x+a0 has integer coefficients, then every rational zero of f has the following form: pfactor of constant term a0 q factor of leading coefficient an What information does it give you? It gives you a pool of numbersto use to help you find a divisor.

  8. Assignment Page 362, 15-29 odd 33-37 odd 45-49 odd

More Related