1 / 15

Solution Manual of DSP First – McClellan [ 2nd 2nd SI ] edition

https://gioumeh.com/product/dsp-first-solution/<br>-----------------------------------------------------------------<br>Authors: James H. McClellan, Ronald W.Schafer, Mark A. Yoder<br> Published: Pearson 2015 , Pearson 2016<br> Edition: 2nd , 2nd SI<br> Pages: 486 , 232<br> Type: pdf<br> Size: 8MB , 5MB<br> Content: Both 2nd and 2nd SI edition solutions<br> Sample: 2nd sample file<br> Sample: 2nd SI sample file<br> Download After Payment

solutionnpp
Download Presentation

Solution Manual of DSP First – McClellan [ 2nd 2nd SI ] edition

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. cl i ck h ere t o d ow nl oad Chapter2 Sinusoids 2-1 Problem Solutions @solutionmanual1 1

  2. CHAPTER 2. SINUSOIDS 2 cl i ck h ere t o d ow nl oad P-2.1 DSP First2e, GE 9 6 3 x.t/ 0 -3 -6 -9 -20 -16 -12 -8 -4 0 4 8 12 16 20 Time t (ms) @solutionmanual1

  3. CHAPTER 2. SINUSOIDS 3 cl i ck h ere t o d ow nl oad P-2.2 DSP First2e, GE In the plot the period can be measured, T = 25ms ⇒ ω0= 2π/(25 × 10−3) = 2π(40)rad/s Positive peak closest to t = 0 is at t1= 5ms ⇒ −2π(5 × 10−3)/(25 × 10−3) = −2π/5 = −0.4π rad Amplitude is A = 20 x(t) = 20cos(80πt − 0.4π) @solutionmanual1

  4. CHAPTER 2. SINUSOIDS 4 cl i ck h ere t o d ow nl oad P-2.3 DSP First2e, GE (a) Plot of cosθ 1 0.5 cos 0 -0.5 -1 ?3 ?2 ? 2 3 0 (rad) (b) Plot of cos(20πt) 1 0.5 cos.20t/ 0 -0.5 -1 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 Time t (s) (c) Plot of cos(2π/T0+ π/2) 1 0.5 x.t/ 0 -0.5 -1 ?T0 ?3T0=4 ?T0=2 ?T0=4 T0=4 T0=2 3T0=4 T0 0 Time t (s) @solutionmanual1

  5. CHAPTER 2. SINUSOIDS 5 cl i ck h ere t o d ow nl oad P-2.4 DSP First2e, GE ejθ= 1 + jθ +(jθ)2 +(jθ)3 +(jθ)4 +(jθ)5 + ··· 2! 3! 4! 5! = 1 + jθ −θ2 ? |{z} Thus, ejθ= cosθ + j sinθ 2!− jθ3 2!+θ4 3!+θ4 ? 4!+ jθ5 ? |{z} 5!+ ··· θ −θ3 ? 1 −θ2 3!+θ5 +j 4!− ··· 5!+ ··· = cosθ sinθ @solutionmanual1

  6. CHAPTER 2. SINUSOIDS 6 cl i ck h ere t o d ow nl oad P-2.5 DSP First2e, GE (a) Real part of complex exponential is cosine. n ej(θ1+θ2)o = <?ejθ1ejθ2? cos(θ1+ θ2) = < = <{(cosθ1+ j sinθ1)(cosθ2+ j sinθ2)} = <{(cosθ1cosθ2− sinθ1sinθ2) + j(sinθ1cosθ2+ cosθ1sinθ2)} cos(θ1+ θ2) = cosθ1cosθ2− sinθ1sinθ2 (b) Change the sign of θ2. n ej(θ1−θ2)o = <?ejθ1e−jθ2? cos(θ1− θ2) = < = <{(cosθ1+ j sinθ1)(cosθ2− j sinθ2)} = <{(cosθ1cosθ2+ sinθ1sinθ2) + j(sinθ1cosθ2− cosθ1sinθ2)} cos(θ1− θ2) = cosθ1cosθ2+ sinθ1sinθ2 @solutionmanual1

  7. CHAPTER 2. SINUSOIDS 7 cl i ck h ere t o d ow nl oad P-2.6 DSP First2e, GE ejθ?n ej0.927?100 = ej29.5167π ? ? (cosθ + j sinθ)n= ? = ejnθ= cos(nθ) + j sin(nθ) ? *1 ej28π = cos(1.5167) + j sin(1.5167) = 0.0525 − j0.9986 ?n ej0.295167π?100 3 5+ j4 = = 5 = ej1.5167π??? @solutionmanual1

  8. CHAPTER 2. SINUSOIDS 8 cl i ck h ere t o d ow nl oad P-2.7 DSP First2e, GE (a) 3ejπ/3+ 4e−jπ/6= 5ej0.12= 4.9641 + j0.5981 ?√12e−jπ/3?10 ?√12e−jπ/3?−1 (d) (√3 − j3)1/3= There are 3 answers: 1.513e−jπ/9= 1.422 − j0.5175 1.513e−j7π/9= −1.159 − j0.9726 1.513e−j13π/9= 1.513e+j5π/9= −0.2627 + j1.49 (e) <?je−jπ/3?= <?ejπ/2e−jπ/3?= <?ejπ/6?= cos(π/6) =√3/2 = 0.866 (b) (√3 − j3)10= = 248,832e−j10π/3 = −124,416 + j215,494.83 |{z} e+j2π/3 = (1/√12)e+jπ/3= 0.2887e+jπ/3= 0.14434 + j0.25 ?√12e−jπ/3ej2π‘?1/3 (c) (√3 − j3)−1= ? (12)1/6e−jπ/9ej2π‘/3? for ‘ = 0,1,2. = @solutionmanual1

  9. CHAPTER 2. SINUSOIDS 9 cl i ck h ere t o d ow nl oad P-2.8 DSP First2e, GE The variable zz defines z(t), and xx defines x(t) = <{z(t)}. z(t) = 15ej(2π(7)(t+0.875)) The period of x(t) is 1/7 = 0.1429, so the time interval −0.15 ≤ t ≤ 0.15 is (0.3)(7) = 2.1 periods. There will be positive peaks of the cosine wave at t = −0.1607s and t = −0.0179s. ⇒ x(t) = 15cos(2π(7)(t + 0.875)) @solutionmanual1

  10. CHAPTER 2. SINUSOIDS 10 cl i ck h ere t o d ow nl oad P-2.9 DSP First2e, GE A = 9 T = 8 × 10−3s ⇒ ω0= 2000π/8 = 250π rad/s t1= −3 × 10−3s ⇒ ϕ = −2π(−3/8) = 3π/4rad z(t) = 9ej(250πt+0.75π), X = 9ej0.75π, and x(t) = 9cos(250πt + 0.75π) @solutionmanual1

  11. CHAPTER 2. SINUSOIDS 11 cl i ck h ere t o d ow nl oad P-2.10 DSP First2e, GE (a) Add complex amps: 3e−j2π/3+ 1 = 2.646e−j1.761 ⇒ x(t) = 2.646cos(ω0t − 1.761) (b) x(t) = <{z(t)} = <{2.646e−j1.761ejω0t} @solutionmanual1

  12. CHAPTER 2. SINUSOIDS 12 cl i ck h ere t o d ow nl oad P-2.11 DSP First2e, GE Add complex amps: e−jπ+ ejπ/3+ 2e−jπ/3= e−jπ+ ejπ/3+ e−jπ/3 +e−jπ/3= e−jπ/3 |{z} =0 ⇒ x(t) = cos(ωt − π/3) Here is the Matlab plot of the vectors. @solutionmanual1

  13. CHAPTER 2. SINUSOIDS 13 cl i ck h ere t o d ow nl oad P-2.12 DSP First2e, GE Find angles satisfying −π < θ ≤ π; all others are obtained by adding integer multiples of 2π. <{(1 + j)ejθ} = 0 <{√2ejπ/4ejθ} = 0 <{√2ej(θ+π/4)} = 0 √2cos(θ + π/4) = 0 ⇒ θ + π/4 = −π/2 ( ( ( (1 + j)/√2 (−1 − j)/√2 π/2 π/4 −3π/4 ⇒ ejθ= ⇒ θ = @solutionmanual1

  14. CHAPTER 2. SINUSOIDS 14 cl i ck h ere t o d ow nl oad P-2.13 DSP First2e, GE Three periods of the signal will be 3(1/250) = 12ms. (a) Plot si(t) = <{js(t)} = <{0.8ejπ/2ejπ/4ej500πt} = 0.8cos(2π(250)t + 3π/4). 0.8 0.4 si.t/ 0 -0.4 -0.8 -3 -2 -1 0 1 2 3 4 -6 -5 -4 Time t (ms) dts(t)} = <{0.8ejπ/4(j500π)ej500πt} = <{400πej3π/4ej500πt} = 400π cos(500πt + 3π/4) (b) Plot q(t) = <{d 1200 800 400 q.t/ 0 -400 -800 -1200 -3 -2 -1 0 1 2 3 4 -6 -5 -4 Time t (ms) @solutionmanual1

  15. CHAPTER 2. SINUSOIDS 15 cl i ck h ere t o d ow nl oad P-2.14 DSP First2e, GE (a) If z1(t) =√5e−jπ/3ej7tthen x1(t) = <{z1(t)}. (b) If z2(t) =√5ejπej7tthen x2(t) = <{z2(t)}. (c) If z(t) = z1(t) + z2(t) =√5ej7t? e−jπ/3+ ejπ? =√5e−j2π/3ej7t, then x(t) = <{z(t)} =√5cos(7t − 2π/3). @solutionmanual1

More Related