110 likes | 591 Views
https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/<br>-----------------------------------------------------------------------------------<br> Authors: Martin H. Sadd<br> Published: Academic 2009<br> Edition: 2nd , 4th<br> Pages: 2nd=269 , 4th=312<br> Type: pdf<br> Size: 2.45MB , 23MB<br> Sample: 4th sample file<br> Download After Payment
E N D
https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/
https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/ 1.1. (a) a ij = + + = + a + = a 1 4 1 a 6 a (scalar) + a a a a a 11 22 a 33 ii = + + + + + + + a a a a a a a a a a a a a 11 11 12 12 13 + 13 + 21 21 22 22 23 23 31 31 32 32 33 33 ij = + + + + + + = 1 1 1 0 16 4 0 1 1 25 (scalar) 1 1 1 1 1 1 1 6 4 = = 0 4 2 0 4 2 0 18 10 (matrix) a a ij jk 0 1 1 0 1 1 0 5 3 3 = + + = 4 (vector) a b a b a b a b 1 1 2 2 3 3 ij j i i i b 2 b = + + + + + + + + a b b a b b a b b a a b b a b b a b b a b b a b b a b b 11 + b 1 1 12 1 2 13 + 1 3 21 2 1 22 2 2 23 2 3 31 3 1 32 3 2 33 3 3 ij i j = + + + b + + b + = 1 0 2 0 0 b 0 0 b 0 4 7 (scalar) 1 0 2 b 1 1 1 2 1 3 = = 0 0 0 (matrix) b b b b b b b b 2 1 2 2 2 3 i j b 2 0 4 b b b b b b 3 1 + 3 2 + 3 3 = = + + = 1 0 4 5 (scalar) b (b) a b b b b b b 1 1 2 2 3 3 i i = + + = + a + = 1 2 2 a 5 (scalar) + a a a a a 11 a 22 a 33 ii = + + + + + + + a a a a a a a a a a a a a a 11 11 12 12 13 + 13 21 = 21 22 22 23 23 31 31 32 32 33 33 ij ij = + + + + + + + 1 4 0 0 4 1 0 16 4 30 (scalar) 1 2 0 1 2 0 1 6 2 = = 0 2 1 0 2 1 0 8 4 (matrix) a a ij jk 0 4 2 0 4 2 0 16 8 4 = + + = 3 (vector) a b a b a b a b 1 1 2 2 3 3 ij j i i i b 6 b = + + + + + + + + a b b a b b a b b a a b b a b b a b b a b b a b b a b b 11 + 1 1 + b 12 1 2 13 + 1 3 21 2 1 22 2 2 23 2 3 31 3 1 32 3 2 33 3 3 ij i j = + + b + + b + = 4 4 0 b 0 2 b 1 0 b 4 2 17 (scalar) 4 2 2 1 1 1 2 1 3 = = 2 1 1 (matrix) b b b b b b b b 2 1 2 2 2 3 i j b 2 + 1 = 1 b b b b b b 3 1 + 3 2 + 3 3 = = + 4 1 1 6 (scalar) b b b b b b b 1 1 2 2 3 3 i i
https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/ = + + = + + = (c) a ij a 1 a 0 4 5 a (scalar) + a a a a a 11 22 a 33 ii = + + + + + + + a a a a a a a a a a a a a a 11 + 11 12 12 + 13 13 21 21 22 22 23 23 31 31 32 32 33 33 ij = + + + + + + = 1 1 1 1 0 4 0 1 16 25 (scalar) 1 1 1 1 1 1 2 2 7 = = 1 0 2 1 0 2 1 3 9 (matrix) a a ij jk 0 1 4 0 1 4 1 4 18 2 = + + = 1 (vector) a b a b a b a b 1 1 2 2 3 3 ij j i i i 1 b = + + + + + + + + a b b a b b a b b a b a b b a b b a b b a b b a b b a b b 11 + b 1 + 1 12 + 1 2 13 1 3 21 2 1 22 2 2 23 2 3 31 3 1 32 3 2 33 3 3 ij i j = + + + b + + = 1 1 0 b 1 0 b 0 0 0 0 3 (scalar) 1 1 0 b b 1 1 1 2 1 3 = = 1 1 0 (matrix) b b b b b b b b 2 1 2 2 2 3 i j 0 + 0 = 0 b b b b b b 3 1 + 3 2 + 3 3 = = + 1 1 0 2 (scalar) b b b b b b b b 1 1 2 2 3 3 i i = + + = + a + = (d) a ij 1 2 0 a 3 a (scalar) + a a a a a 11 a 22 a 33 ii = + + + + + + + a a a a a a a a a a a a a 11 11 12 + 12 + 13 13 + 21 21 22 22 23 23 31 31 32 32 33 33 ij = + + + + + = 1 0 0 0 4 1 0 9 0 15 (scalar) 1 0 0 1 0 0 1 0 0 = = 0 2 1 0 2 1 0 7 3 (matrix) a a ij jk 0 3 1 0 3 1 0 9 4 1 = + + = 0 (vector) a b a b a b a b 1 1 2 2 3 3 ij j i i i 0 b = + + + + + + + + a b b a b b a b b a b a b b a b b a b b a b b a b b a b b 11 + b 1 1 12 1 2 13 + 1 = 3 21 2 1 22 2 2 23 2 3 31 3 1 32 3 2 33 3 3 ij i j = + + + b + + b + 1 0 0 0 0 b 0 0 b 0 0 1 (scalar) 1 0 1 b 1 1 1 2 1 3 = = 0 0 0 (matrix) b b b b b b b b 2 1 2 2 2 3 i j 1 0 = 1 b b b b b b 3 1 + 3 2 + 3 3 = = + + 1 0 1 2 (scalar) b b b b b b b b 1 1 2 2 3 3 i i
https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/ 1.2. 1 1 = + + − ) a ( ( ) ( ) a a a a a ij ij ji ij ji 2 2 2 1 1 0 1 1 1 1 = + − 1 8 3 1 0 1 2 2 − − 1 3 2 1 1 0 clearly and satisfy th appropriat e conditions e a a ( ) [ ] ij ij 1 1 = + + − ) b ( ( ) ( ) a a a a a ij ij ji ij ji 2 2 2 2 0 0 2 0 1 1 = + − − 2 4 5 2 0 3 2 2 0 5 4 0 3 0 clearly and satisfy th appropriat e conditions e a a ( ) [ ] ij ij 1 1 = + + − ) c ( ( ) ( ) a a a a a ij ij ji ij ji 2 2 2 2 1 0 0 1 1 1 = + 2 0 3 0 0 1 2 2 − − 1 3 8 1 1 0 clearly and satisfy th appropriat e conditions e a a ( ) [ ] ij ij 1 1 = + + − ) d ( ( ) ( ) a a a a a ij ij ji ij ji 2 2 2 0 0 0 0 0 1 1 = + − 0 4 4 0 0 2 2 2 0 4 0 0 2 0 clearly and satisfy th appropriat e conditions e a a ( ) [ ] ij ij
https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/ 1.3. a = − = − = = 2 0 0 b a b a b a b a b ij ij ji ji ij ij ij ij ij ij T 2 1 1 0 1 1 1 = − = From Exercise 1 - 2(a) : 1 8 3 1 0 1 0 a a tr ( ) [ ] ij ij 4 − − 1 3 2 1 1 0 T 2 2 0 0 2 0 1 = − − = From Exercise 1 - 2(b) : 2 4 5 2 0 3 0 a a tr ( ) [ ] ij ij 4 0 5 4 0 3 0 T 2 2 1 0 0 1 1 = = From Exercise 1 - 2(c) : 2 0 3 0 0 1 0 a a tr ( ) [ ] ij ij 4 − − 1 3 8 1 1 0 T 2 0 0 0 0 0 1 = − = From Exercise 1 - 2(d) : 0 4 4 0 0 2 0 a a tr ( ) [ ] ij ij 4 0 4 0 0 2 0 1.4. + + a a a a 11 1 12 2 13 3 1 = + + = + + = = a a a a a a a a a 1 1 2 2 3 3 21 1 22 2 23 3 2 ij j i i i i + + a a a + a 31 1 32 2 33 3 3 + + + + + a a a a a a a a a 11 11 12 21 13 31 11 12 12 22 13 32 11 13 12 23 13 33 = a ij jk a a a 11 12 13 = = a a a a 21 22 23 ij a a a 31 32 33 1.5. det( = = 123 + + ) a a a a a a a a a a a a a 1 a 2 a 3 a + 11 a 22 33 231 12 a 23 a 31 a 312 13 21 32 ij ijk i j k + + 132 + a + a 321 a 13 22 31 a − 11 23 a 32 a 213 − 12 a 21 a 33 a = − − a a a a a a a a a a a 11 22 a 33 a 12 a 23 a 31 ) 13 21 32 13 22 31 ) 11 ( 23 32 12 21 33 = − − + − ( ( ) a a a a a a a a a a a 11 a 22 a 33 23 32 12 21 33 23 31 13 21 32 22 31 a 11 12 13 = a a a 21 22 23 a a a 31 32 33
https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/ 1.6. 1 0 0 o = 45 rotation about x - axis 0 2 / 2 2 / 2 Q 1 ij 1 − 0 2 / 2 2 / 2 0 0 1 1 i = = = From Exercise 1 - 1(a) : 0 2 / 2 2 / 2 0 2 b Q b ij j − 0 2 / 2 2 / 2 2 2 T 1 0 0 1 1 1 1 0 0 1 2 0 ij = = = − 0 2 / 2 2 / 2 0 4 2 0 2 / 2 2 / 2 0 4 1 a Q Q a ip jq pq − − − 0 2 / 2 2 / 2 0 1 1 0 2 / 2 2 / 2 0 2 1 1 0 0 2 2 i = = = From Exercise 1 - 1(b) : 0 2 / 2 2 / 2 1 2 b Q b ij j − 0 2 / 2 2 / 2 1 0 T − 1 0 0 1 2 0 1 0 0 1 2 2 ij = = = − 0 2 / 2 2 / 2 0 2 1 0 2 / 2 2 / 2 0 5 . 4 5 . 1 a Q Q a ip jq pq − − − 0 2 / 2 2 / 2 0 4 2 0 2 / 2 2 / 2 0 5 . 1 5 . 0 1 0 0 1 1 i = = = From Exercise 1 - 1(c) : 0 2 / 2 2 / 2 1 2 / 2 b Q b ij j T − − 0 2 / 2 2 / 2 0 2 / 2 1 0 0 1 1 1 1 0 0 1 2 0 ij = = = 0 2 / 2 2 / 2 1 0 2 0 2 / 2 2 / 2 2 / 2 5 . 3 5 . 2 a Q Q a ip jq pq − − − 0 2 / 2 2 / 2 0 1 4 0 2 / 2 2 / 2 2 / 2 5 . 1 5 . 0 1 0 0 1 1 i = = = From Exercise 1 - 1(d) : 0 2 / 2 2 / 2 0 2 / 2 b Q b ij j − 0 2 / 2 2 / 2 1 2 / 2 T 1 0 0 1 0 0 1 0 0 1 0 0 ij = = = − 0 2 / 2 2 / 2 0 2 1 0 2 / 2 2 / 2 0 3 2 a Q Q a ip jq pq − − − 0 2 / 2 2 / 2 0 3 0 0 2 / 2 2 / 2 0 0 1
https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/ 1.7. 1 1 − cos( , ) cos( , ) cos sin x x x x o cos cos( 90 ) 1 2 = = = Q 2 2 ij − + cos( , ) cos( , ) sin cos x x x x o cos( 90 ) cos 1 2 + cos sin cos sin b b b i 1 1 b 2 = = = b Q b ij j − + − sin cos sin cos b b 2 1 2 T cos sin cos sin a a ij 11 12 = = a Q Q a cos ( sin ip jq pq − − sin cos sin cos a a 21 22 + + + − − − 2 2 2 2 cos ) sin cos ( a ) sin cos sin a a a a a a a a = 11 12 21 22 12 11 22 21 − − − − + + 2 2 2 2 cos ( ) sin cos sin sin ( ) sin cos cos a a a a a a a 21 11 22 12 11 12 21 22 1.8. a ' 1.9. ' = = = Q Q a aQ Q a ij ip jq pq ip jp ij + + = + + ' ' ( ) Q Q Q Q ij Q kl ik jl il jk im Q jn + kp Q lq Q mn pq mp nq + mq np + = 1.10. C + = Q Q Q Q Q Q Q Q ln im jm kp lp im jn km im jn kn lm ij kl ik jl il jk = + + = + + ( ) ijkl ij kl ik jl il jk ij kl ik jl il jk = + + = ( ) C kl ij ki lj kj li klij 1.11. 0 0 1 = If 0 0 a 2 0 = 0 + 3 = + I a 1 0 2 3 a ii 0 0 2 1 1 = + + = + + II 1 2 2 3 1 3 a 0 0 0 3 3 2 0 0 1 = = 0 0 III 2 1 2 3 a 0 0 3
https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/ 1.12. − 1 1 1 0 = − 0 = − = − = (a) 1 0 , 1 , 2 0 a I II III ij a a a is 0 1 Roots − , 0 − + 1 = + − = + − = 3 2 2 Characteri stic Eqn 2 0 ( ) 2 0 ( 2 )( ) 1 0 2 = − = = 2 , 1 2 3 = − Case : 1 + = ) 1 ( 1 ) 1 ( 1 ) 1 ( 2 1 1 0 0 n n n = = = − = = − ) 1 ( 2 ) 1 ( 3 ) 1 ( 1 ) 1 ( 2 ) 1 ( n 1 1 0 0 0 n 2 , 2 / ( 2 / 2 )( 0 , 1 , 1 ) n n n n 2 2 2 + + = ) 1 ( 3 ) 1 ( 1 ) 1 ( 2 ) 1 ( 3 0 0 3 1 n n n = 0 Case : 2 − + = − 1 ) 2 ( 1 n ) 2 ( 2 0 1 1 0 n n n 1 − 0 = = = = ) 2 ( n 1 0 0 2 / 2 ( 2 / 2 )( 1 ) 0 1 , , n n n = 2 ) 2 ( 3 0 2 1 2 : 2 2 0 1 n + + = ) 2 ( 1 ) 2 ( 2 ) 2 ( 3 1 n n n 3 = 1 Case 3 − + = − ) 3 ( 1 n ) 3 ( 2 n 2 0 2 1 0 n n n 1 − = = = = = ) 3 ( 3 ) 3 ( n 1 2 0 0 , 0 1 ) 1 , 0 , 0 ( n n n n − = 2 ) 3 ( 1 n ) 3 ( 2 n 2 0 2 1 2 2 2 0 0 0 n + + = ) 3 ( 1 ) 3 ( 2 ) 3 ( 3 1 n 3 − 1 1 1 0 = rotation The matrix given is by 2 / 2 1 0 and Q ij 0 0 2 / 2 T − 1 − 1 − 1 − 1 1 0 1 1 0 1 1 0 2 0 0 1 ij = = − 0 = 1 0 1 0 1 0 0 0 0 a Q Q a ip jp pq 2 0 0 2 / 2 0 1 0 0 2 / 2 0 0 1
https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/ 1.12. − 2 1 0 = − = − = = (b) 1 2 0 , 4 , 3 0 a I II III ij a a a 0 0 0 Roots − , 1 − − = + + = + + = 3 2 2 Characteri stic Eqn is 4 3 0 ( 4 ) 3 0 ( 3 )( ) 1 0 3 = − = − = 3 , 0 1 2 3 = − Case : 1 + = ) 1 ( 1 ) 1 ( 1 ) 1 ( 2 1 1 0 0 n n n = = = − = = − ) 1 ( 2 ) 1 ( 3 ) 1 ( 1 ) 1 ( 2 ) 1 ( n 1 1 0 0 0 n 2 , 2 / ( 2 / 2 )( 0 , 1 , 1 ) n n n n 2 2 2 + + = ) 1 ( 3 ) 1 ( 1 ) 1 ( 2 ) 1 ( 3 0 0 3 1 n n n = − 1 Case : 2 − + = − 1 ) 2 ( 1 n ) 2 ( 2 0 1 1 0 n n n 1 − 0 = = = = ) 2 ( n 1 0 0 2 / 2 ( 2 / 2 )( 1 ) 0 1 , , n n n = 2 ) 2 ( 3 0 2 1 2 : 2 2 0 1 n + + = ) 2 ( 1 ) 2 ( 2 ) 2 ( 3 1 n n n 3 = 0 Case 3 − + = − ) 3 ( 1 n ) 3 ( 2 n 2 0 2 1 0 n n n 1 − = = = = = ) 3 ( 3 ) 3 ( n 1 2 0 0 , 0 1 ) 1 , 0 , 0 ( n n n n − = 2 ) 3 ( 1 n ) 3 ( 2 n 2 0 2 1 2 2 2 0 0 0 n + + = ) 3 ( 1 ) 3 ( 2 ) 3 ( 3 1 n 3 − 1 1 1 0 = rotation The matrix given is by 2 / 2 1 0 and Q ij 1 0 0 2 / 2 T − 1 − − 1 − 1 1 0 2 0 1 1 0 3 0 0 1 ij = = − = − 0 1 0 1 2 0 1 0 0 1 0 a Q Q a ip jp pq 2 0 0 2 / 2 0 0 0 0 0 2 / 2 0 0
https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/ 1.12. − 1 1 1 0 = − 0 = − = = (c) 1 0 , 2 , 0 0 a I II III ij a a a is 0 0 Roots − − = + = 3 2 2 Characteri stic Eqn 2 0 or ( ) 2 0 2 = − = = 2 , 0 1 2 3 = − Case : 1 + = ) 1 ( 1 ) 1 ( 1 ) 1 ( 2 1 1 0 0 n n n = = = − = = − ) 1 ( 2 ) 1 ( 3 ) 1 ( 1 ) 1 ( 2 ) 1 ( n 1 1 0 0 0 n 2 , 2 / 2 ( 2 / 0 , 1 , 1 ) n n n n 2 2 2 + + = ) 1 ( 3 ) 1 ( 1 ) 1 ( 2 ) 1 ( 3 0 0 2 1 n n n = 1 = 0 Case : 2 3 − 1 1 0 n 1 − 2 + 2 2 = 0 2 n n 2 2 1 n 2 − 0 = = = − = 2 n 1 0 0 , 1 2 ( 1 2 ) n n n n n k,k, - k 2 1 2 3 1 + + = 1 n n for k , 1 3 0 0 n 3 arbitrary and thus directions uniquely not are determined convenienc For . we e may choose = = = ) 2 ( ) 3 ( n n 2 / 2 and 0 to get 2 0 , 1 , 1 ( 2 / ) and ) 1 , 0 , 0 ( k − 1 1 1 0 = rotation The matrix given is by 2 / 2 1 0 and Q ij 0 0 / 2 2 T − 1 − 1 − 1 − 1 1 0 1 1 0 1 1 0 2 0 0 1 ij = = − 0 = 1 0 1 0 1 0 0 0 0 a Q Q a ip jp pq 2 0 0 2 / 2 0 0 0 0 2 / 2 0 0 0
https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/https://gioumeh.com/product/elasticity-theory-applications-numerics-solution/ 1.12. − 6 3 0 = − = = = (d) 3 6 0 18 , 99 , 162 a I II III ij a a a 0 0 6 3 2 Roots − + − + = − − − = Characteri stic Eqn is 18 99 162 0 or ( 9 )( 6 )( ) 3 0 Case = : = = , 3 , 6 9 1 2 3 = 3 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 2 − − ) 1 ( 3 n = 0 n 3 3 0 0 n n n ) 1 ( 2 ) 1 ( 1 ) 1 ( 2 ) 1 ( 3 ) 1 ( − = = = = = = n 3 3 0 0 3 n 2 , 2 / , 0 2 0 , 1 , 1 ( 2 / ) n n n n 2 2 2 ) 1 ( 3 ) 1 ( 1 ) 1 ( 2 ) 1 ( 3 0 0 3 + + = n 1 n = 6 Case : 2 ) 2 ( 1 ) 2 ( 2 − = = 0 3 0 0 n n n 1 ) 2 ( − = = n 3 0 0 0 ) 1 , 0 , 0 ( n 2 2 2 2 ) 2 ( 1 ) 2 ( 2 ) 2 ( 3 + + = 0 0 0 n 1 n n n 3 = 9 Case : 3 ) 1 ( 1 ) 3 ( 1 ) 3 ( 2 − − + n = 0 n 3 3 0 0 n n n ) 1 ( 2 ) 3 ( 3 ) 3 ( 1 ) 3 ( 2 ) 3 ( 3 ) 3 ( − − = − = = − = = = − n 3 3 0 0 3 n 2 , 2 / , 0 2 , 1 ( 2 / 0 , 1 ) n n n n 2 2 2 ) 1 ( 3 − ) 3 ( 1 ) 3 ( 2 ) 3 ( 3 0 0 3 + + = n 1 n 1 1 0 = rotation The matrix given is by 2 / 2 0 0 2 / 2 and Q ij − 1 1 0 T − 1 1 0 6 3 0 1 1 0 3 0 0 1 ij = = − = 0 0 2 / 2 3 6 0 0 0 2 / 2 0 6 0 a Q Q a ip jp pq 2 − − 1 1 0 0 0 6 1 1 0 0 0 9 1.13*.