1 / 30

Solution Manual of Fundamentals of Momentum Heat and Mass Transfer 4th – 5th – 7

https://gioumeh.com/product/fundamentals-of-momentum-heat-and-mass-transfer-solution/<br>-----------------------------------------------------------------------<br> Authors: James Welty, Charles E. Wicks, Gregory L. Rorrer,<br> Published: Wiley 2000 ^ 2007 ^ 2019<br> Edition: 4th ^ 5th ^ 7th<br> Pages: 322 ^ 328 ^ 996<br> Type: pdf ^ pdf ^ pdf<br> Size: 12MB ^ 26MB ^ 17MB<br> Sample: 7th edition solution sample<br> Download After Payment

solutionnpp
Download Presentation

Solution Manual of Fundamentals of Momentum Heat and Mass Transfer 4th – 5th – 7

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. cl i ck h ere t o d ow nl oad Chapter 1 End of Chapter Problem Solutions 1.1 n = 4 x 1020 molecules/in3 == 1.32x104 in./s A= NA = (10-3 in)2 nA=1.04x108 m/s @solutionmanual1

  2. cl i ck h ere t o d ow nl oad 1.2 Flow Properties: Velocity, Pressure Gradient, Stress Fluid Properties: Pressure, Temperature, Density, Speed of Sound, Specific Heat @solutionmanual1

  3. cl i ck h ere t o d ow nl oad 1.3 mass of solid= ρsvs mass of fluid= ρfvf mix= = = @solutionmanual1

  4. cl i ck h ere t o d ow nl oad 1.4 Given For P1= 1 atm P= 3001(1.01)7– 3000 = 217 atm = 7 = 1.01 @solutionmanual1

  5. cl i ck h ere t o d ow nl oad 1.5 At Constant Temperature For 10% increase in P must also increase by 10 % = constant = constant @solutionmanual1

  6. cl i ck h ere t o d ow nl oad 1.6 Since density varies as & =nM (M=Molecular wt.) n250,000= nS.L. = 4 x 1020 = 2.5 x 1016 @solutionmanual1

  7. cl i ck h ere t o d ow nl oad 1.7 = x + y = + = x + y = + Q.E.D. @solutionmanual1

  8. cl i ck h ere t o d ow nl oad 1.8 = = Q.E.D. = + = @solutionmanual1

  9. cl i ck h ere t o d ow nl oad 1.9 Transformation from (x,y) to (r,) = r2 = x2+y2 = = + + so: = = = = = = = = = = + @solutionmanual1

  10. cl i ck h ere t o d ow nl oad 1.10 = = ( = ( + ) Thus: = + + ) + ( + )+ + (+) + + @solutionmanual1

  11. cl i ck h ere t o d ow nl oad 1.11 P= P(a,b)= = + 2 + (sin1cos1) 2{[ + 2)+ ( ) @solutionmanual1

  12. cl i ck h ere t o d ow nl oad 1.12 T(x,y)= Toe-1/4 [ T(a,b)= Toe-1/4 [ = Toe-1/4[ = (cos cosh )+ (sin sinh ) (coscosh1)+ (sinsinh1) + ] [ (1+e-2) + @solutionmanual1

  13. cl i ck h ere t o d ow nl oad 1.13 In problem 1.12 T(x,y) is dimensionally homogeneous (D.H.) P(x,y) in Prob 1.11 will be D.H. if ~ or using the conversion factor gc LBf s2/ ft4 @solutionmanual1

  14. cl i ck h ere t o d ow nl oad 1.14 = 3x2y+4y2 A scalar field is given by the function: (a)Find at the point (3,5) For the value of at the point (3,5) (b)Find the component of that makes a -60 angle with the axis at the point (3,5) Let the unit vector be represented by At the point (3,5) this becomes: @solutionmanual1

  15. cl i ck h ere t o d ow nl oad 1.15 For an ideal gas P= From Prob 1.3: @solutionmanual1

  16. cl i ck h ere t o d ow nl oad 1.16 = Arsin(1- a) = b)= A max is given by d= 0 or Requiring For And for From Eq. 2: 4a2/r2=0 If a0, r then for which = 0, Subst. into Eq. 1 =0, 1-a2/r2=0 Giving a = r For = 1+ a2/r2 =0 impossible Thus conditions for max are r = a ) = Asin(1- + ) 1/2 dr+ d= 0 = =0 = 0: -(1+ ) + (1- ) = 0 (1) =0: (2) (3) @solutionmanual1

  17. cl i ck h ere t o d ow nl oad 1.17 P=Po+ 2 = = + = + P = 2 2 2 2 @solutionmanual1

  18. cl i ck h ere t o d ow nl oad 1.18 Vertical cylinder d=10m, h=6m V= @ 20w=998.2 kg/m3 m= wV= (998.2)(471.2)= 470350 kg @ 80w=971.8 kg/m3 m=(971.8)(471.2)= 457910 kg 12440 kg (10m)2(6m)= 471.2 m3 @solutionmanual1

  19. cl i ck h ere t o d ow nl oad 1.19 Liquid = -V V= 1194 cm3= 1.194 x 10-3 m3 ∆V= -12 cm3= -1.2 x 10-7 m3 = -1.194 x 10-3 = +12440 MPa V= 1200 cm3 @ 1.25 MPa V=1188 cm3 @ 2.5 MPa T -V @solutionmanual1

  20. cl i ck h ere t o d ow nl oad 1.20 = -V V=0.25 m3 V= -0.005 m3 P= 10 mPa = -0.25 T-V = 500 MPa @solutionmanual1

  21. cl i ck h ere t o d ow nl oad 1.21 For H20: = -0.0075 -V ∆P= (2.205 GPa)(0.0075) = 0.0165 GPa= 16.5 MPa =2.205 GPa or ∆P = @solutionmanual1

  22. cl i ck h ere t o d ow nl oad 1.22 For H20: = -V = P2=120 MPa 2.205 P1=100kPa or = = = 0.999 x 10-3 = 0.0999 percent @solutionmanual1

  23. cl i ck h ere t o d ow nl oad 1.23 H20@ 68 (341 K) 0.123 [1-0.00139(341)] = 0.0647 N/m In a clean tube- =0 h = = 9.37 x 10-3m = 9.37 mm = @solutionmanual1

  24. cl i ck h ere t o d ow nl oad 1.24 Parallel Glass Plates Gap=1.625 mm = 0.0735 N/m For a unit depth: Surface Tension Force = 2(1)cos Weight of H20 = (1)(1.625x10-3) For clean glass cos=1 Equating Forces: 2(1)= (1)(1.625x10-3) h = = 0.00922m= 9.22 mm @solutionmanual1

  25. cl i ck h ere t o d ow nl oad 1.25 1.26 H20-Air-Glass Interface @40 Tube Radius= 1 mm h= = 0.123[1-0.0139(313)]=0.0695 N/m h = cos = 0.0143m (1.43 cm) @solutionmanual1

  26. cl i ck h ere t o d ow nl oad 1.26 1.27 Soap Bubble- T=20 d=4mm = 0.025 N/m (Table 1.2) Force Balance for Bubble: r2r so = = 25 N/m2 = 25 Pa @solutionmanual1

  27. cl i ck h ere t o d ow nl oad 1.29 @60C Tube Diameter= 0.55 mm h= For H20: 1.27 = 0.0662 N/m = 0.44 N/m = 0.0499m (4.99 cm Rise) For Hg: = -0.0157 m (1.57 cm Depression) @solutionmanual1

  28. cl i ck h ere t o d ow nl oad 1.28 1.30 H20/ Glass Interface T=30C = 0.123[1-0.0139(303)] = 0.0712 N/m = 996 kg/m3 h 1 mm h = r = d = 2r = 2.915 cm = 0.0146 m (1.457 cm) = @solutionmanual1

  29. cl i ck h ere t o d ow nl oad 1.29 1.31 Bubble Diameter = 0.25 cm = 0.0025 m, and so Radius = 0.00125 m Capillary Tube: Diameter = 0.2cm = 0.002 m, and so Radius = 0.001 m Beginning with: Rearrange and remember the unit conversion Pa=kg/ms2, Next, we can calculate the height of the fluid in the tube: @solutionmanual1

  30. cl i ck h ere t o d ow nl oad 1.30 1.32 First, calculate the surface tension of water using the temperature of the water: Next, using the equation for the height of a fluid in a capillary, Rearranging and solving for the radius: Diameter is 2r so D=1.50 mm @solutionmanual1

More Related